Skip to main content

Advertisement

Log in

Models of quintessence compact stars in Rastall gravity consistent with observational data

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This work is devoted to present a new solution of field equations in the Rastall paradigm for isotropic matter content with quintessence field specified by the parameter \(\omega _q\) with the condition \(-1<\omega _q<-\frac{1}{3}\). In order to obtain relativistic analytic solution, we used the Krori and Barua (KB) insatz in the static and spherically symmetric geometry. The obtained results analyzed analytically and graphically for the physical assessment. It is shown that for a suitable choice of coupling parameter, the original results in the standard general relativity (GR) can be retrieved. We provide a comparative study of acquired results in both the aspects, graphically and numerically with the observational evidences and GR counterpart. The comparative study shown that our obtained model is in good concurrence with the observational data in comparison with the GR. For this whole analysis, we considered five different compact stars namely, SAX J1808-3658 (SSI), Vela X-12, Her X-1, PSR J1416-2230 and 4U 1820-30 with radii 7.07 km, 9.99 km, 7.7 km, 10.3 km and 10 km, respectively. To check the viability of the presented model, we investigate different physical parameters such as energy conditions, stability analysis (via. sound speed and adiabatic index), Buchdahl limit, hydrostatic equilibrium of forces. We found that presented model is totally stable and well consistent with the plausible physical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during the current study are available in the M. R. Shahzad repository, https://doi.org/10.1140/epjp/s13360-020-00508-3.]

References

  1. S. Perlmutter et al., Supernova cosmology project collaboration. ApJ 517, 565 (1999)

    ADS  Google Scholar 

  2. C.L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003)

    ADS  Google Scholar 

  3. A.G. Riess et al., Supernova search team collaboration. Astron. J. 116, 1009 (1998)

    ADS  Google Scholar 

  4. P.A.R. Ade et al., BICEP2 collaboration. Phys. Rev. Lett. 112, 241101 (2014)

    ADS  Google Scholar 

  5. W.M. Wood-Vasey et al., Astrophys. J. 666, 694 (2007)

    ADS  Google Scholar 

  6. M. Kowalski et al., Supernova cosmology project collaboration. Astrophys. J. 686, 749 (2008)

    ADS  Google Scholar 

  7. E. Komatsu et al., WMAP collaboration. Astrophys. J. Suppl. 180, 330 (2009)

    ADS  Google Scholar 

  8. M. Tegmark et al., SDSS collaboration. Phys. Rev. D 69, 103501 (2004)

    ADS  MATH  Google Scholar 

  9. K. Abazajian et al., Astron. J. 129, 1755 (2005)

    ADS  Google Scholar 

  10. K. Abazajian et al., SDSS collaboration. Astron. J. 128, 502 (2004)

    ADS  Google Scholar 

  11. K. Abazajian et al., SDSS collaboration. Astron. J. 126, 2081 (2003)

    ADS  Google Scholar 

  12. E. Hawkins et al., Mon. Not. R. Astron. Soc. 346, 78 (2003)

    ADS  Google Scholar 

  13. L. Verde et al., Mon. Not. R. Astron. Soc. 335, 432 (2002)

    ADS  Google Scholar 

  14. D.N. Spergel et al., WMAP collaboration. ApJS 148, 175 (2003)

    ADS  Google Scholar 

  15. J. Edmund et al., Int. J. Mod. Phys. D 15, 1753 (2006)

    Google Scholar 

  16. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513, 1–189 (2012)

    ADS  MathSciNet  Google Scholar 

  17. A. Qadir, H.W. Lee, K.Y. Kim, Int. J. Mod. Phys. D 26(1–11), 1741001 (2017)

    ADS  Google Scholar 

  18. P. Rastall, Phys. Rev. D 6, 3357–3360 (1972)

    ADS  MathSciNet  Google Scholar 

  19. P. Rastall, Can. J. Phys. 54, 66–75 (1976)

    ADS  MathSciNet  Google Scholar 

  20. J.C. Fabris, O.F. Piattella, D.C. Rodrigues, C.E.M. Batista, M.H. Daouda, Int. J. Mod. Phys. Conf. Ser 18, 67–76 (2012)

    Google Scholar 

  21. J.P. Campos, J.C. Fabris, R. Perez, O.F. Piattella, H. Velten, Eur. Phys. J. C 73, 2357 (2013)

    ADS  Google Scholar 

  22. J.C. Fabris, M.H. Daouda, O.F. Piattella, Phys. Lett. B 711, 232 (2012)

    ADS  Google Scholar 

  23. H. Moradpour, Phys. Lett. B 757, 187 (2016)

    ADS  Google Scholar 

  24. A.S. Al-Rawaf, M.O. Taha, General Relativ. Gravity 28, 935 (1996)

    ADS  Google Scholar 

  25. C.E.M. Batista, M.H. Daouda, J.C. Fabris, O.F. Piattella, D.C. Rodrigues, Phys. Rev. D 85, 084008 (2012)

    ADS  Google Scholar 

  26. T.R.P. Carames, M.H. Daouda, J.C. Fabris, A.M. Oliveira, O.F. Piattella, V. Strokov, Eur. Phys. J. C 74, 3145 (2014)

    ADS  Google Scholar 

  27. I.G. Salako, M.J.S. Houndjo, A. Jawad, Int. J. Mod. Phys. D 25, 1650076 (2016)

    ADS  Google Scholar 

  28. L.L. Smalley, Phys. Rev. D 9, 1635 (1974)

    ADS  Google Scholar 

  29. L.L. Smalley, Phys. Rev. D 12, 376 (1975)

    ADS  Google Scholar 

  30. C. Wolf, Phys. Scr. 34, 193 (1986)

    ADS  Google Scholar 

  31. H. Moradpour, Y. Heydarzade, F. Darabi, I.G. Salako, Eur. Phys. J. C 77, 259 (2017)

    ADS  Google Scholar 

  32. R. Saleem, J. Hassan, Phys. Dark Universe 28, 100515 (2020)

    Google Scholar 

  33. T. Manna, F. Rahaman, M. Mondal, Phys. Lett. A. 35(07), 2050034 (2020). https://doi.org/10.1142/S0217732320500340

    Article  Google Scholar 

  34. Y. Heydarzade, F. Darabi, Phys. Lett. B 771, 365–373 (2017)

    ADS  Google Scholar 

  35. E. Spallucci, A. Smailagic, Int. J. Mod. Phys. D 27(1), 1–11 (2018). (1850003)

    Google Scholar 

  36. M.S. Ma, R. Zhao, Eur. Phys. J. C 77, 629–635 (2017)

    ADS  Google Scholar 

  37. M.S. Ali (2019). arXiv:1901.04318v2 [gr-qc]

  38. K. Lin, W.L. Qian, Chin. Phys. C 43(8), 1–5 (2019). (083106)

    Google Scholar 

  39. M.F.A.R. Sakti, A. Suroso, F.P. Zen (2019). arXiv:1901.09163v1 [gr-qc]

  40. Y. Heydarzade, H. Moradpour, F. Darabi, Can. J. Phys. 95, 1253–1256 (2017)

    ADS  Google Scholar 

  41. Z. Xu, X. Hou, X. Gong, J. Wang, Eur. Phys. J. C 78, 513–524 (2018)

    ADS  Google Scholar 

  42. I.P. Lobo, H. Moradpour, J.P. Morais Graça, I.G. Salako, Int. J. Mod. Phys. D 27, 1–17 (2018)

    Google Scholar 

  43. K. Bamba, A. Jawad, S. Rafique, H. Moradpour, Eur. Phys. J. C 78, 986–997 (2018)

    ADS  Google Scholar 

  44. H. Moradpour, N. Sadeghnezhad, S.H. Hendi, Can. J. Phys. 95, 1257–1266 (2017)

    ADS  Google Scholar 

  45. J. Liang, Commun. Theor. Phys. 70, 695–704 (2018)

    ADS  Google Scholar 

  46. R. Kumar, S.G. Ghosh, Eur. Phys. J. C 78, 750–762 (2018)

    ADS  Google Scholar 

  47. R. Kumar, B.P. Singh, M.S. Ali, S.G. Ghosh (2018). arXiv:1712.09793v3 [gr-qc]

  48. P. Lobo, H. Moradpour, J.P. Morais Graça, I.G. Salako, Int. J. Mod. Phys. D 27(7), 1850069 (2018)

    ADS  Google Scholar 

  49. H. Moradpour, I.G. Salako, Adv. High Energy Phys. 2016(3492796), 1–5 (2016)

    Google Scholar 

  50. S. Soroushfar, R. Saffari, S. Upadhyay, General Relativ. Gravity 51, 130 (2019)

    ADS  Google Scholar 

  51. K. Bamba, A. Jawad, S. Rafique, H. Moradpour, Eur. Phys. J. C 78, 986 (2018)

    ADS  Google Scholar 

  52. Miguel Cruz et al., Class. Quantum Gravity 36, 225007 (2019)

    ADS  Google Scholar 

  53. M. Visser, Phys. Lett. B 782(83), 83–86 (2018)

    ADS  Google Scholar 

  54. F. Darabi, H. Moradpour, I. Licata, Y. Heydarzade, C. Corda, Eur. Phys. J. C 78, 25–28 (2018)

    ADS  Google Scholar 

  55. L.L. Smalley, J. Phys. A Math. General 16, 2179–2185 (1983)

    ADS  MathSciNet  Google Scholar 

  56. H. Moradpour, A. Bonilla, E.M.C. Abreu, J.A. Neto, Phys. Rev. D 96(1–13), 123504 (2017)

    ADS  MathSciNet  Google Scholar 

  57. S. Hansraj, A. Banerjee, P. Channuie, Ann. Phys. 400(320), 320–345 (2019)

    ADS  Google Scholar 

  58. R.C. Tolman, Phys. Rev. 55, 364–373 (1939)

    ADS  Google Scholar 

  59. S. Hansraj, A. Banerjee, Mod. Phys. Lett. A. 35(13), 2050105 (2020). https://doi.org/10.1142/S0217732320501059

    Article  ADS  Google Scholar 

  60. G. Abbas, M.R. Shahzad, Astrophys. Space Sci. 363, 251–258 (2018)

    ADS  Google Scholar 

  61. G. Abbas, M.R. Shahzad, Eur. Phys. J. A 54, 211–221 (2018)

    ADS  Google Scholar 

  62. G. Abbas, M.R. Shahzad, Astrophys. Space Sci. 364, 50–61 (2019)

    ADS  Google Scholar 

  63. G. Abbas, M.R. Shahzad, Int. J. Geom. Methods Mod. Phys. 9, 1950132 (2019)

    Google Scholar 

  64. G. Abbas, M.R. Shahzad, Chin. J. Phys. 63, 1–12 (2020)

    Google Scholar 

  65. K.D. Krori, J. Barua, J. Phys. A Math. General 8, 508 (1975)

    ADS  Google Scholar 

  66. J. Santos, J.S. Alcaniz, M.J. Reboucas, F.C. Carvalho, Phys. Rev. D 76, 083513 (2007)

    ADS  MathSciNet  Google Scholar 

  67. L. Balart, E.C. Vagenas, Phys. Lett. B 730, 14 (2014)

    ADS  MathSciNet  Google Scholar 

  68. M. Visser, Science 276, 88 (1997)

    ADS  Google Scholar 

  69. N.M. Garcia, T. Harko, F.S.N. Lobo, J.P. Mimoso, J. Phys. Conf. Ser. 314, 012060 (2011)

    Google Scholar 

  70. K. Atazadeh, F. Darabi, General Relativ. Gravity 46, 1664 (2014)

    ADS  Google Scholar 

  71. O. Bertolami, M.C. Sequeira, Phys. Rev. D 79, 104010 (2009)

    ADS  MathSciNet  Google Scholar 

  72. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space Time (Cambridge University Press, Cambridge, 1975)

    MATH  Google Scholar 

  73. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55(4), 374–381 (1939)

    ADS  Google Scholar 

  74. V.V. Kiselev, Class. Quantum Gravity 20, 1187 (2003)

    ADS  Google Scholar 

  75. L. Herrera, Phys. Lett. A 165, 206–210 (1992)

    ADS  Google Scholar 

  76. S. Chandrasekhar, Astrophys. J. 140, 417 (1964)

    ADS  MathSciNet  Google Scholar 

  77. H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 38, 51 (1975)

    ADS  Google Scholar 

  78. W. Hillebrandt, K.O. Steinmetz, Astron. Astrophys. 53, 283 (1976)

    ADS  Google Scholar 

  79. D. Horvat, S. Ilijic, A. Marunovic, Class. Quantum Gravity 28, 025009 (2011)

    ADS  Google Scholar 

  80. D.D. Doneva, S.S. Yazadjiev, Phys. Rev. D 85, 124023 (2012)

    ADS  Google Scholar 

  81. H.O. Silva, C.F.B. Macedo, E. Berti, L.C.B. Crispino, Class. Quantum Gravity 32, 145008 (2015)

    ADS  Google Scholar 

  82. I. Bombaci, Astron. Astrophys. 305, 871 (1996)

    ADS  Google Scholar 

  83. H.A. Buchdahl, Phys. Rev. 116, 1027–1034 (1959)

    ADS  MathSciNet  Google Scholar 

  84. N. Straumann, General Relativity and Relativistic Astrophysics. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1984). https://doi.org/10.1007/978-3-642-84439-3

  85. C.G. Bohmer, T. Harko, General Relativ. Gravity 39, 757–775 (2007)

    ADS  Google Scholar 

  86. C.G. Bohmer, T. Harko, Class. Quantum Gravity 23, 6479–6491 (2006)

    ADS  Google Scholar 

  87. B.V. Ivanov, Phys. Rev. D 65(1–17), 104001 (2002)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Shahzad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzad, M.R., Abbas, G. Models of quintessence compact stars in Rastall gravity consistent with observational data. Eur. Phys. J. Plus 135, 502 (2020). https://doi.org/10.1140/epjp/s13360-020-00508-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00508-3

Navigation