Skip to main content
Log in

Complexity for self-gravitating fluid distributions in f(GT) gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper is devoted to analyze the effects of charge on the complexity for static self-gravitating fluids in the background of f(GT) gravity, where G and T represent the Gauss–Bonnet term and trace of energy momentum tensor, respectively. We work out the modified field equations, Darmois junction conditions, relation between the Reimann and Weyl tensor, mass function, Tolman mass in f(GT) gravity with electromagnetic effects. After orthogonal breaking of the Riemann tensor, we evaluated all the structure scalars and identified \(Y_{TF}\) as a complexity of the system. We also evaluated couple of static solutions with the zero contribution of the obtained complexity condition to analyze the structure and evolution of compact objects. Finally, we deduced that effective charge terms decrease the complexity of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Lopez-Ruiz, H.L. Mancini, Phys. Lett. A 209(5–6), 321 (1995)

    ADS  Google Scholar 

  2. X. Calbet, R. López-Ruiz, Phys. Rev. E 63(6), 066116 (2001)

    ADS  Google Scholar 

  3. R.G. Catalán, J. Garay, R. López-Ruiz, Phys. Rev. E 66(1), 011102 (2002)

    ADS  Google Scholar 

  4. L. Herrera, Phys. Rev. D 97, 044010 (2018)

    ADS  MathSciNet  Google Scholar 

  5. J. Sañudo, A. Pacheco, Phys. Lett. A 373(8–9), 807 (2009)

    ADS  Google Scholar 

  6. K.C. Chatzisavvas, V. Psonis, C. Panos, C.C. Moustakidis, Phys. Lett. A 373(43), 3901 (2009)

    ADS  Google Scholar 

  7. G. Abbas, H. Nazar, Eur. Phys. J. C 78, 510 (2018)

    ADS  Google Scholar 

  8. L. Herrera, A. Di Prisco, J. Ospino, J. Phys. Rev. D 99, 044049 (2019)

    ADS  Google Scholar 

  9. Z. Yousaf, Phys. Dark Univ. 28, 100509 (2020)

    Google Scholar 

  10. D. Pietrobon, A. Balbi, D. Marinucci, Phys. Rev. D 74, 043524 (2006)

    ADS  Google Scholar 

  11. T. Giannantonio et al., Phys. Rev. D 74, 063520 (2006)

    ADS  Google Scholar 

  12. A.G. Riess et al., Astrophys. J. 659, 98 (2007)

    ADS  Google Scholar 

  13. N. Deruelle, L. Farina-Busto, Phys. Rev. D 41(12), 3696 (1990)

    ADS  MathSciNet  Google Scholar 

  14. S. Nojiri, S.D. Odintsov, Phys. Lett. B 631(1–2), 1 (2005)

    ADS  MathSciNet  Google Scholar 

  15. C.G. Boehmer, F.S. Lobo, Phys. Rev. D 79(6), 067504 (2009)

    ADS  Google Scholar 

  16. S. Nojiri, S.D. Odintsov, O. Gorbunova, J. Phys. A Math. Gen. 39(21), 6627 (2006)

    ADS  Google Scholar 

  17. M. Gürses, Gen. Relat. Gravit. 40(9), 1825 (2008)

    ADS  Google Scholar 

  18. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani, S. Zerbini, Phys. Rev. D 77(4), 046009 (2008)

    ADS  Google Scholar 

  19. M. Sharif, A. Ikram, Eur. Phys. J. C 76, 640 (2016)

    ADS  Google Scholar 

  20. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84(2), 024020 (2011)

    ADS  Google Scholar 

  21. Z. Yousaf, Astrophys. Space Sci. 363, 226 (2018)

    ADS  Google Scholar 

  22. Z. Yousaf, Eur. Phys. J. Plus 134(5), 245 (2019)

    Google Scholar 

  23. M.Z. Bhatti, M. Sharif, Z. Yousaf, Int. J. Mod. Phys. D 27, 1850044 (2018)

    ADS  Google Scholar 

  24. R. Sharma, S. Das, J. Gravity 2013, 659605 (2013)

    Google Scholar 

  25. M. Esculpi, E. Aloma, Eur. Phys. J. C 67(3), 521 (2010)

    ADS  Google Scholar 

  26. D. Christodoulou, Commun. Math. Phys. 93(2), 171 (1984)

    ADS  Google Scholar 

  27. A. Di Prisco, L. Herrera, G. Le Denmat, M.A.H. MacCallum, N.O. Santos, Phys. Rev. D 76, 064017 (2007)

    ADS  Google Scholar 

  28. P.S. Letelier, Phys. Rev. D 22(4), 807 (1980)

    ADS  MathSciNet  Google Scholar 

  29. L. Herrera, A. Di Prisco, J. Ospino, Gen. Relat. Gravit. 42(7), 1585 (2010)

    ADS  Google Scholar 

  30. L. Herrera, A. Di Prisco, J. Ibanez, Phys. Rev. D 84(10), 107501 (2011)

    ADS  Google Scholar 

  31. L. Herrera, A. Di Prisco, J. Ospino, J. Gen. Relat. Gravit. 44, 2645 (2012)

    ADS  Google Scholar 

  32. Z. Yousaf, M.Z. Bhatti, Mon. Not. R. Astron. Soc. 458, 1785 (2016)

    ADS  Google Scholar 

  33. R. Chan, L. Herrera, N.O. Santos, Mon. Not. R. Astron. Soc. 265(3), 553 (1993)

    ADS  Google Scholar 

  34. K. Dev, M. Gleiser, Gen. Relat. Gravit. 35(8), 1435 (2003)

    ADS  Google Scholar 

  35. L. Herrera, Entropy 19, 110 (2017)

    ADS  Google Scholar 

  36. Z. Yousaf, M.Z. Bhatti, S. Yaseen, Eur. Phys. J. Plus 134, 487 (2019)

    Google Scholar 

  37. Z. Yousaf, M.Z. Bhatti, M.F. Malik, Eur. Phys. J. Plus 134, 470 (2019)

    Google Scholar 

  38. A.K. Yadav, L.K. Sharma, B.K. Singh, New Astr. 78, 101382 (2020)

    Google Scholar 

  39. L. Herrera, Entropy 22, 340 (2020)

    ADS  Google Scholar 

  40. S.K. Maurya, Y.K. Gupta, Astrophys. Space Sci. 344(1), 243 (2013)

    ADS  Google Scholar 

  41. Z. Yousaf, M.Z. Bhatti, T. Naseer, Phys. Dark Univ. 28, 100535 (2020)

    Google Scholar 

  42. Z. Yousaf, M.Z. Bhatti, T. Naseer, Eur. Phys. J. Plus 135, 323 (2020)

    Google Scholar 

  43. L. Herrera, A. Di Prisco, J.L. Hernández-Pastora, N.O. Santos, Phys. Lett. A 237, 113 (1998)

    ADS  Google Scholar 

  44. M.Z. Bhatti, Z. Yousaf, A. Yousaf, Mod. Phys. Lett. A 34(02), 1950012 (2019)

    ADS  Google Scholar 

  45. M.Z. Bhatti, Z. Yousaf, A. Yousaf, Int. J. Geom. Methods Mod. Phys. 16(03), 1950041 (2019)

    MathSciNet  Google Scholar 

  46. R.V. Konoplich, S.G. Rubin, A.S. Sakharov, M.Y. Khlopov, Phys. At. Nucl. 62, 1593 (1999)

    Google Scholar 

  47. Z. Yousaf, Mod. Phys. Lett. A 34, 1950333 (2019)

    ADS  MathSciNet  Google Scholar 

  48. M. Sharif, A. Majid, Chin. J. Phys. 61, 38 (2019)

    Google Scholar 

  49. R.C. Tolman, Phys. Rev. 35(8), 875 (1930)

    ADS  Google Scholar 

  50. L. Bel, Annales de l’institut Henri Poincaré 17, 37 (1961)

    MathSciNet  Google Scholar 

  51. L. Herrera, A. Di Prisco, J. Martin, J. Ospino, N.O. Santos, O. Troconis, Phys. Rev. D 69(8), 084026 (2004)

    ADS  Google Scholar 

  52. L. Herrera, J. Ospino, A. Di Prisco, E. Fuenmayor, O. Troconis, Phys. Rev. D 79(6), 064025 (2009)

    ADS  MathSciNet  Google Scholar 

  53. A.G.-P. Gómez-Lobo, Class. Quant. Grav. 25, 015006 (2007)

    Google Scholar 

  54. M.K. Gokhroo, A.L. Mehra, Gen. Relat. Gravit. 26, 75 (1994)

    ADS  Google Scholar 

  55. Z. Yousaf, M.Z. Bhatti, H. Asad, Phys. Dark Univ. 28, 100527 (2020)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Research Project for Universities (NRPU), Higher Education Commission, Pakistan, under the research Project No. 8754/Punjab/NRPU/R&D/HEC/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Yousaf.

Appendices

Appendix A

$$\begin{aligned} \mu ^\mathrm{eff}= & {} \mu +\frac{1}{8\pi }\left[ (\mu +P)f_{T}+\frac{f}{2} -\frac{6\lambda 'f_{G}'}{r^{2}\mathrm{e}^{2\lambda }} -\frac{4f_{G}''}{r^{2}\mathrm{e}^{\lambda }}+\frac{2\lambda 'f_{G}'}{r^{2}\mathrm{e}^{\lambda }} +\frac{4f_{G}''}{r^{2}\mathrm{e}^{2\lambda }}\right. \\&-\left. \frac{\nu '^{2}f_{G}}{r^{2}\mathrm{e}^{2\lambda }}-\frac{\lambda '\nu 'f_{G}}{r^{2}\mathrm{e}^{\lambda }} +\frac{3\lambda '\nu 'f_{G}}{r^{2}\mathrm{e}^{\lambda }} +\frac{\nu '^{2}f_{G}}{r^{2}\mathrm{e}^{\lambda }}-\frac{2\nu ''f_{G}}{r^{2}\mathrm{e}^{2\lambda }} +\frac{2\nu ''f_{G}}{r^{2}\mathrm{e}^{\lambda }}\right] ,\\ P_{r}^\mathrm{eff}= & {} P_{r}+\frac{1}{8\pi }\left[ \frac{2}{3}\Pi f_{T}-\frac{f}{2}+\frac{\nu '^{2}f_{G}}{r^{2}\mathrm{e}^{2\lambda }} +\frac{2\nu ''f_{G}}{r^{2}\mathrm{e}^{2\lambda }} -\frac{2\nu ''f_{G}}{r^{2}\mathrm{e}^{\lambda }} -\frac{\nu '^{2}f_{G}}{r^{2}\mathrm{e}^{\lambda }}\right. \\&-\left. \frac{6\nu 'f_{G}'}{r^{2}\mathrm{e}^{2\lambda }}+\frac{\lambda '\nu 'f_{G}}{r^{2}\mathrm{e}^{\lambda }} -\frac{2\nu '^{2}f_{G}'}{r\mathrm{e}^{2\lambda }} +\frac{2\nu 'f_{G}'}{r^{2}\mathrm{e}^{\lambda }}+\frac{2\nu '\lambda 'f_{G}'}{r\mathrm{e}^{2\lambda }} -\frac{3\lambda '\nu 'f_{G}}{r^{2}\mathrm{e}^{2\lambda }}\right] ,\\ P^\mathrm{eff}_{\bot }= & {} P_\bot +\frac{1}{8\pi }\left[ -\left( \frac{\Pi }{3}+\frac{q^2}{4\pi r^4}\right) f_{T}-\frac{f}{2}+\frac{\nu '^{2}f_{G}}{r^{2}\mathrm{e}^{2\lambda }} +\frac{3\lambda '\nu 'f_{G}'}{r\mathrm{e}^{2\lambda }}-\frac{\nu '^{2}f_{G}}{r^{2}\mathrm{e}^{\lambda }} \right. \\&+\left. \frac{\nu '^{2}f_{G}'}{r\mathrm{e}^{2\lambda }} -\frac{2\nu 'f_{G}''}{r\mathrm{e}^{2\lambda }} -\frac{2\nu ''f_{G}'}{r\mathrm{e}^{2\lambda }}-\frac{3\lambda '\nu 'f_{G}}{r^{2}\mathrm{e}^{2\lambda }}-\frac{2\nu ''f_{G}}{r^{2}\mathrm{e}^{\lambda }} +\frac{2\nu ''f_{G}}{r^{2}\mathrm{e}^{2\lambda }}+\frac{\lambda '\nu 'f_{G}}{r^{2}\mathrm{e}^{\lambda }}\right] ,\\ \chi _{1}= & {} \frac{-1}{8\pi }\left[ \frac{2}{3}\Pi {\tilde{f}}_{T}-\frac{{\tilde{f}}}{2}+\frac{\nu '^{2}{\tilde{f}}_{G}}{r^{2}\mathrm{e}^{2\lambda }} -\frac{\nu '^{2}{\tilde{f}}_{G}}{r^{2}\mathrm{e}^{\lambda }}\right. +\left. \frac{2\nu ''{\tilde{f}}_{G}}{r^{2}\mathrm{e}^{2\lambda }} -\frac{3\lambda '\nu '{\tilde{f}}_{G}}{r^{2}\mathrm{e}^{2\lambda }} -\frac{2\nu ''{\tilde{f}}_{G}}{r^{2}\mathrm{e}^{\lambda }} +\frac{\lambda '\nu '{\tilde{f}}_{G}}{r^{2}\mathrm{e}^{\lambda }}\right] ,\\ Z= & {} \frac{f_{T}}{k^{2}-f_{T}}\left[ \mathrm{e}^{\lambda }\left( -P_{r}+P-\frac{q^2}{8\pi r^4}\right) \frac{f_{T,r}}{f_{T}}+\left( -2P_{r}\mathrm{e}^{\lambda }+P\mathrm{e}^{\lambda }-\frac{q^2}{8\pi r^4}\mathrm{e}^{\lambda }\right) _{,r}\right. \\&+\frac{\mathrm{e}^{\lambda }}{2}\left[ (\mu -3P) \right. +\left. \left. \frac{1}{8\pi }\left( (\mu +P)f_{T}-\frac{q^2}{3\pi r^4}f_{T}+2f-2R^{2}f_{G} \right. \right. \right. \\&+4R_{l\nu }R^{l\nu }f_{G}+4R^{lm}R^{\nu }_{l\nu m}f_{G}-\left. \left. \left. 2R^{\mu }_{lmn}R^{lmn}_{\mu }f_{G} -2R\Box f_{G}+16R^{lm}\nabla _{l}\nabla _{m}f_{G} \right. \right. \right. \\&-4R^{l\mu }\nabla _{l}\nabla _{\mu }f_{G} -4R^{l\nu }\nabla _{\nu }\nabla _{l}f_{G}\left. \left. \left. -4R^{\nu }_{l\nu m}\nabla ^{l}\nabla ^{m}f_{G}\right) \right] _{,r}\right] . \end{aligned}$$

Appendix B

$$\begin{aligned} C^{(D)}_{\alpha \beta }= & {} \left[ 2R_{l\delta }R^{l\gamma }f_{G} -RR^{\gamma }_{\delta }f_{G}+2R^{lm}R^{\gamma }_{l\delta m}f_{G} -2R_{\delta lmn}R^{lmn\gamma }f_{G}\right. \\&+\left. 2R^{\gamma }_{\delta }\Box f_{G} -2R^{l\gamma }\nabla _{\delta }\nabla _{l}f_{G}+R\nabla ^{\gamma }\nabla _{\delta }f_{G} -2R^{l}_{\delta }\nabla ^{\gamma }\nabla _{l}f_{G}\right. \\&-\left. 2R^{\gamma }_{l\delta m}\nabla ^{l}\nabla ^{m}f_{G}\right] \epsilon _{\alpha \beta \gamma }u^{\delta }, \\ A^{(D)}_{\alpha \beta }= & {} + 2\left[ R_{l\beta }R^{l}_{\alpha }f_{G}-\frac{1}{2}RR_{\alpha \beta }f_{G}-\frac{1}{2}R_{\beta lmn}R^{lmn}_{\alpha }f_{G}+ R^{lm}R_{l\beta m\alpha }f_{G}+R_{\alpha \beta }\Box f_{G}\right. \\&+\left. \frac{1}{2}R \nabla _{\alpha }\nabla _{\beta }f_{G}-R^{l}_{\beta }\nabla _{\alpha }\nabla _{l}f_{G} -R^{l}_{\alpha }\nabla _{\beta }\nabla _{l}f_{G}-R_{l\beta m\alpha }\nabla ^{l}\nabla ^{m}f_{G}\right] -2Rh_{\alpha \beta }\Box f_{G}\\&+\,4R^{lm}h_{\alpha \beta }\nabla _{l}\nabla _{m}f_{G} +2\left[ -R_{l\delta }R^{l}_{\alpha }f_{G}+\frac{1}{2}RR_{\alpha \delta }f_{G}- R^{lm}R_{l\delta m\alpha }f_{G}\right. \\&+\left. \frac{1}{2}R_{\delta lmn}R^{lmn}_{\alpha }f_{G}+R_{l\delta m\alpha }\nabla ^{l}\nabla ^{m}f_{G}+R^{l}_{\alpha }\nabla _{\delta }\nabla _{l}f_{G} -R_{\delta \alpha }\Box f_{G}+R^{l}_{\delta }\nabla _{\alpha }\nabla _{l}f_{G}\right. \\&-\left. \frac{1}{2}R \nabla _{\alpha }\nabla _{\delta }f_{G}\right] u_{\beta }u^{\delta } +2\left[ -R_{l\beta }R^{l\gamma }f_{G}- R^{lm}R^{\gamma }_{l\beta m}f_{G}+\frac{1}{2}RR^{\gamma }_{\beta }f_{G}\right. \\&+\left. \frac{1}{2}R_{\beta lmn}R^{lmn\gamma }f_{G}-R^{\gamma }_{\beta }\Box f_{G}+R^{l\gamma }\nabla _{\beta }\nabla _{l}f_{G}+R^{l}_{\beta } \nabla ^{\gamma }\nabla _{l}f_{G}+R^{\gamma }_{l\beta m}\nabla ^{l}\nabla ^{m}\right. \\&-\left. \frac{1}{2}R \nabla ^{\gamma }\nabla _{\beta }f_{G}\right] u_{\alpha }u_{\gamma }+ R^{lm}R^{\gamma }_{l\delta m}f_{G}+ 2\left[ R_{l\delta }R^{l\gamma }f_{G}-\frac{1}{2}RR^{\gamma }_{\delta }f_{G}\right. \\&-\left. \frac{1}{2}R_{\delta lmn}R^{lmn \gamma }f_{G}+R^{\gamma }_{\delta }\Box f_{G}+\frac{1}{2}R \nabla ^{\gamma }\nabla _{\delta }f_{G}-R^{l\gamma }\nabla _{\delta }\nabla _{l} f_{G}-R^{l}_{\delta }\nabla ^{\gamma }\nabla _{l}f_{G}\right. \\&-\left. R^{\gamma }_{l\delta m}\nabla ^{l}\nabla ^{m}f_{G}\right] g_{\alpha \beta }u_{\gamma }u^{\delta }-\frac{1}{3}\left[ 4R^{l\nu }R_{l\nu } f_{G}+4R^{lm}R^{\nu }_{l\nu m}f_{G}-2R^{2}f_{G}\right. \\&-\left. 2R^{\mu }_{lmn}R^{lmn}_{\mu }f_{G} -2R\Box f_{G}-4R^{l\nu }\nabla _{\nu }\nabla _{l}f_{G}+16R^{lm}\nabla _{l}\nabla _{m}f_{G}\right. \\&-\left. 4R^{l\mu }\nabla _{\mu }\nabla _{l}f_{G} -4R^{\nu }_{l\nu m}\nabla ^{l}\nabla ^{m}f_{G}\right] h_{\alpha \beta } -\frac{1}{6}fh_{\alpha \beta },\\ N^{(D)}= & {} 2\left[ R_{l\beta }R^{l}_{\alpha }f_{G}-\frac{1}{2}RR_{\alpha \beta } f_{G}-\frac{1}{2}R_{\beta \beta lmn}R^{lmn}_{\alpha }f_{G}+ R^{lm}R_{l\beta m\alpha }f_{G}+R_{\alpha \beta }\Box f_{G}\right. \\&+\left. \frac{1}{2}R \nabla _{\alpha }\nabla _{\beta }f_{G}-R^{l}_{\beta }\nabla _{\alpha } \nabla _{l}f_{G}-R^{l}_{\alpha }\nabla _{\beta }\nabla _{l}f_{G}-R_{l\beta m\alpha }\nabla ^{l}\nabla ^{m}f_{G}\right] g^{\alpha \beta }-6R\Box f_{G}\\&+12R^{lm}\nabla _{l}\nabla _{m}f_{G}+2\left[ -R_{l\delta }R^{l}_{\alpha }f_{G}- R^{lm}R_{l\delta m\alpha }f_{G}+\frac{1}{2}RR_{\alpha \delta }f_{G}\right. \\&+\left. \frac{1}{2}R_{\delta lmn}R^{lmn}_{\alpha }f_{G}+R_{l\delta m\alpha }\nabla ^{l}\nabla ^{m}f_{G}-R_{\delta \alpha }\Box f_{G}+R^{l}_{\alpha }\nabla _{\delta }\nabla _{l}f_{G} +R^{l}_{\delta }\nabla _{\alpha }\nabla _{l}f_{G}\right. \\&-\left. \frac{1}{2}R \nabla _{\alpha }\nabla _{\delta }f_{G}\right] u_{\beta }u^{\delta } g^{\alpha \beta }+2\left[ -R_{l\beta }R^{l\gamma }f_{G}- R^{lm}R^{\gamma }_{l\beta m}f_{G}+\frac{1}{2}RR^{\gamma }_{\beta }f_{G}\right. \\&+\left. \frac{1}{2}R_{\beta lmn}R^{lmn\gamma }f_{G}-R^{\gamma }_{\beta }\Box f_{G}+R^{l}_{\beta }\nabla ^{\gamma }\nabla _{l}f_{G}+R^{l\gamma } \nabla _{\beta }\nabla _{l}f_{G}+R^{\gamma }_{l\beta m}\nabla ^{l}\nabla ^{m}f_{G}\right. \\&-\left. \frac{1}{2}R \nabla ^{\gamma }\nabla _{\beta }f_{G}\right] u_{\alpha }u_{\gamma }g^{\alpha \beta }+ 2\left[ R_{l\delta }R^{l\gamma }f_{G}+ R^{lm}R^{\gamma }_{l\delta m}f_{G}-\frac{1}{2}RR^{\gamma }_{\delta }f_{G}\right. \\&-\left. \frac{1}{2}R_{\delta lmn}R^{lmn \gamma }f_{G}+\frac{1}{2}R \nabla ^{\gamma }\nabla _{\delta }f_{G}+R^{\gamma }_{\delta }\Box f_{G}-R^{l\gamma }\nabla _{\delta }\nabla _{l}f_{G}-R^{l}_{\delta } \nabla ^{\gamma }\nabla _{l}f_{G}\right. \\&-\left. R^{\gamma }_{l\delta m}\nabla ^{l}\nabla ^{m}f_{G}\right] g_{\alpha \beta }u_{\gamma }u^{\delta }g^{\alpha \beta } -\left[ 4R^{l\nu }R_{l\nu }f_{G}+4R^{lm}R^{\nu }_{l\nu m}f_{G} -2R^{2}f_{G}\right. \\&-\left. 2R^{\mu }_{lmn}R^{lmn}_{\mu }f_{G}+16R^{lm} \nabla _{l}\nabla _{m}f_{G} -2R\Box f_{G} -4R^{l\nu }\nabla _{\nu }\nabla _{l}f_{G}\right. \\&-\left. 4R^{l\mu }\nabla _{\mu }\nabla _{l}f_{G} -4R^{\nu }_{l\nu m}\nabla ^{l}\nabla ^{m}f_{G}\right] - \frac{1}{2}f, \end{aligned}$$
$$\begin{aligned} L^{(D)}_{(\alpha \beta )}= & {} \left[ 2R_{ld}R^{l}_{c}f_{G}-RR_{cd}f_{G}-R_{dlmn}R^{lmn}_{c}f_{G} +2R^{lm}R_{ldmc}f_{G}+2R_{cd}\Box f_{G}\right. \\&+\left. R\nabla _{c}\nabla _{d}f_{G}-2R^{l}_{d} \nabla _{c}\nabla _{l}f_{G}-2R^{l}_{c}\nabla _{d}\nabla _{l}f_{G} -2R_{ldmc}\nabla ^{l}\nabla ^{m}f_{G}\right] h^{c}_{\alpha }h^{d}_{\beta }\\&+2\left[ R_{l\delta }R^{l\gamma }f_{G} -\frac{1}{2}RR^{\gamma }_{\delta }f_{G}+ R^{lm}R^{\gamma }_{l\delta m}f_{G}-\frac{1}{2}R_{\delta lmn}R^{lmn \gamma }f_{G}\right. \\&+\left. R^{\gamma }_{\delta }\Box f_{G}-R^{l\gamma }\nabla _{\delta }\nabla _{l}f_{G}+\frac{1}{2}R \nabla ^{\gamma }\nabla _{\delta }f_{G} -R^{l}_{\delta }\nabla ^{\gamma }\nabla _{l}f_{G}\right. \\&-\left. R^{\gamma }_{l\delta m}\nabla ^{l}\nabla ^{m}f_{G}\right] h_{\alpha \beta }u_{\gamma }u^{\delta } -2\left[ R_{l\beta }R^{l}_{\alpha }f_{G}-\frac{1}{2}RR_{\alpha \beta }f_{G}+ R^{lm}R_{l\beta m\alpha }f_{G}\right. \\&-\left. \frac{1}{2}R_{\beta lmn}R^{lmn}_{\alpha }f_{G}+\frac{1}{2}R \nabla _{\alpha }\nabla _{\beta }f_{G}+R_{\alpha \beta }\Box f_{G}-R^{l}_{\alpha }\nabla _{\beta }\nabla _{l}f_{G}\right. \\&-\left. R^{l}_{\beta }\nabla _{\alpha }\nabla _{l}f_{G}-R_{l\beta m\alpha }\nabla ^{l}\nabla ^{m}f_{G}\right] -2\left[ -R_{l\delta }R^{l}_{\alpha }f_{G}- R^{lm}R_{l\delta m\alpha }f_{G}\right. \\&+\left. \frac{1}{2}RR_{\alpha \delta }f_{G}-R_{\delta \alpha }\Box f_{G}+\frac{1}{2}R_{\delta lmn}R^{lmn}_{\alpha }f_{G}+R_{l\delta m\alpha }\nabla ^{l}\nabla ^{m}f_{G}\right. \\&+\left. R^{l}_{\alpha } \nabla _{\delta }\nabla _{l}f_{G}+R^{l}_{\delta }\nabla _{\alpha }\nabla _{l}f_{G}-\frac{1}{2}R \nabla _{\alpha }\nabla _{\delta }f_{G}\right] u_{\beta }u^{\delta } -2\left[ -R_{l\beta }R^{l\gamma }f_{G}\right. \\&-\left. R^{lm}R^{\gamma }_{l\beta m}f_{G}+\frac{1}{2}R_{\beta lmn}R^{lmn\gamma }f_{G}+\frac{1}{2}RR^{\gamma }_{\beta }f_{G}-R^{\gamma }_{\beta }\Box f_{G}\right. \\&+\left. R^{l\gamma }\nabla _{\beta }\nabla _{l}f_{G}+R^{\gamma }_{l\beta m}\nabla ^{l}\nabla ^{m}f_{G}+R^{l}_{\beta }\nabla ^{\gamma }\nabla _{l}f_{G}-\frac{1}{2}R \nabla ^{\gamma }\nabla _{\beta }f_{G}\right] u_{\alpha }u_{\gamma }\\&-2\left[ R_{l\delta }R^{l\gamma }f_{G}+ R^{lm}R^{\gamma }_{l\delta m}f_{G}-\frac{1}{2}RR^{\gamma }_{\delta }f_{G}-\frac{1}{2}R_{\delta lmn}R^{lmn \gamma }f_{G}\right. \\&+\left. R^{\gamma }_{\delta }\Box f_{G}-R^{l\gamma }\nabla _{\delta }\nabla _{l}f_{G}+\frac{1}{2}R \nabla ^{\gamma }\nabla _{\delta }f_{G} -R^{l}_{\delta }\nabla ^{\gamma }\nabla _{l}f_{G}\right. \\&-\left. R^{\gamma }_{l\delta m}\nabla ^{l}\nabla ^{m}f_{G}\right] u_{\gamma }u^{\delta }g_{\alpha \beta }, \end{aligned}$$
$$\begin{aligned} B^{(D)}_{\alpha \beta }= & {} \left[ \frac{1}{2}R_{l\epsilon }R^{l p}f_{G}-\frac{1}{4}RR^{p}_{\epsilon }f_{G}+\frac{1}{2}R^{lm}R^{p}_{l\epsilon m}f_{G}-\frac{1}{4}R_{\epsilon lmn}R^{lmn p}f_{G}\right. \\&+\left. \frac{1}{2} R^{p}_{\epsilon }\Box f_{G}-\frac{1}{4}R^{lp}\nabla _{\epsilon }\nabla _{l}f_{G}+\frac{1}{4} R\nabla ^{p}\nabla _{\epsilon }f_{G}-\frac{1}{2}R^{l}_{\epsilon }\nabla ^{p}\nabla _{l} f_{G}\right. \\&-\left. \frac{1}{2}R^{p}_{l\epsilon m}\nabla ^{l}\nabla ^{m}f_{G}\right] \epsilon _{p \delta \beta }\epsilon ^{\epsilon \delta }_{\alpha }+\left[ -\frac{1}{2} R_{l\delta }R^{lp}f_{G}-\frac{1}{2}R^{lm}R^{p}_{l\delta m} f_{G}\right. \\&+\left. \frac{1}{4}RR^{p}_{\delta }f_{G}-\frac{1}{2}R^{p}_{\delta }\Box f_{G}+\frac{1}{4}R_{\delta lmn}R^{lmnp}f_{G}-\frac{1}{4}R\nabla ^{p}\nabla _{\delta }f_{G}\right. \\&+\left. \frac{1}{4}R^{lp}\nabla _{\delta }\nabla _{l}f_{G}+\frac{1}{2} R^{l}_{\delta }\nabla ^{p}\nabla _{l}f_{G} +\frac{1}{2}R^{p}_{l\delta m}\nabla ^{l}\nabla ^{m}f_{G}\right] \epsilon _{p\epsilon \beta }\epsilon ^{\epsilon \delta }_{\alpha }\\&+\left[ -\frac{1}{2}R_{l\epsilon } R^{l\gamma }f_{G}+\frac{1}{4}R_{\epsilon lmn}R^{lmn\gamma }f_{G}-\frac{1}{2}R^{lm}R^{\gamma }_{l\epsilon m}f_{G} +\frac{1}{4}RR^{\gamma }_{\epsilon }f_{G}\right. \\&-\left. \frac{1}{2}R^{\gamma }_{\epsilon }\Box f_{G}+\frac{1}{4}R^{l\gamma }\nabla _{\epsilon }\nabla _{l}f_{G} -\frac{1}{4}R\nabla ^{\gamma }\nabla _{\epsilon }f_{G}+\frac{1}{2} R^{l}_{\epsilon }\nabla ^{\gamma }\nabla _{l} f_{G}\right. \\&+\left. \frac{1}{2}R^{\gamma }_{l\epsilon m}\nabla ^{l} \nabla ^{m}f_{G}\right] \epsilon _{\delta \gamma \beta }\epsilon ^{\epsilon \delta }_{\alpha } +\left[ \frac{1}{2}R_{l\delta }R^{l\gamma }f_{G} +\frac{1}{2}R^{lm}R^{\gamma }_{l\delta m}f_{G}\right. \\&-\left. \frac{1}{4}RR^{\gamma }_{\delta }f_{G}-\frac{1}{4}R_{\delta lmn}R^{lmn\gamma }f_{G}+\frac{1}{4}R\nabla ^{\gamma }\nabla _{\delta }f_{G} +\frac{1}{2}R^{\gamma }_{\delta }\Box f_{G}\right. \\&-\left. \frac{1}{4}R^{l\gamma }\nabla _{\delta }\nabla _{l}f_{G} -\frac{1}{2}R^{l}_{\delta }\nabla ^{\gamma }\nabla _{l}f_{G}-\frac{1}{2}R^{\gamma }_{l\delta m}\nabla ^{l}\nabla ^{m}f_{G}\right] \epsilon _{\epsilon \gamma \beta } \epsilon ^{\epsilon \delta }_{\alpha }\\&-4R^{lm}\nabla _{l}\nabla _{m} h_{\alpha \beta }f_{G} +2Rh_{\alpha \beta }\Box f_{G}+\frac{1}{3}\left[ \left( \mu +P\right) f_{T}+4R^{l\nu }R_{l\nu }f_{G}\right. \\&+\left. 4R^{lm}R^{\nu }_{l\nu m}f_{G}-2R^{\mu }_{lmn}R^{lmn}_{\mu }f_{G}-2R^{2}f_{G}-2R\Box f_{G}\right. \\&+\left. 16R^{lm}\nabla _{l}\nabla _{m}f_{G}-4R^{l\nu }\nabla _{\nu }\nabla _{l}f_{G} -4R^{l\mu }\nabla _{\mu }\nabla _{l}f_{G}\right. \\&-\left. 4R^{\nu }_{l\nu m}\nabla ^{l}\nabla ^{m}f_{G}\right] h_{\alpha \beta }+\frac{1}{6}fh_{\alpha \beta },\\ F^{(D)}= & {} \left[ \frac{1}{2}R_{l\epsilon }R^{l p}f_{G}-\frac{1}{4}R_{\epsilon lmn}R^{lmn p}f_{G}+\frac{1}{2}R^{lm}R^{p}_{l\epsilon m}f_{G}-\frac{1}{4}RR^{p}_{\epsilon }f_{G}\right. \\&+\left. \frac{1}{2} R^{p}_{\epsilon }\Box f_{G}-\frac{1}{4}R^{lp}\nabla _{\epsilon }\nabla _{l}f_{G}+\frac{1}{4} R\nabla ^{p}\nabla _{\epsilon }f_{G}-\frac{1}{2}R^{l}_{\epsilon }\nabla ^{p}\nabla _{l} f_{G}\right. \\&-\left. \frac{1}{2}R^{p}_{l\epsilon m}\nabla ^{l}\nabla ^{m}f_{G}\right] g^{\alpha \beta }\epsilon _{p \delta \beta }\epsilon ^{\epsilon \delta }_{\alpha }+\left[ -\frac{1}{2} R_{l\delta }R^{lp}f_{G}-\frac{1}{2}R^{lm}R^{p}_{l\delta m} f_{G}\right. \\&+\left. \frac{1}{4}RR^{p}_{\delta }f_{G}-\frac{1}{2}R^{p}_{\delta }\Box f_{G}+\frac{1}{4}R_{\delta lmn}R^{lmnp}f_{G}-\frac{1}{4}R\nabla ^{p}\nabla _{\delta }f_{G}\right. \\&+\left. \frac{1}{4}R^{lp}\nabla _{\delta }\nabla _{l}f_{G}+\frac{1}{2} R^{l}_{\delta }\nabla ^{p}\nabla _{l}f_{G} +\frac{1}{2}R^{p}_{l\delta m}\nabla ^{l}\nabla ^{m}f_{G}\right] g^{\alpha \beta }\epsilon _{p\epsilon \beta }\epsilon ^{\epsilon \delta }_{\alpha }\\&+\left[ -\frac{1}{2}R_{l\epsilon } R^{l\gamma }f_{G}+\frac{1}{4}RR^{\gamma }_{\epsilon }f_{G}-\frac{1}{2}R^{lm} R^{\gamma }_{l\epsilon m}f_{G} +\frac{1}{4}R_{\epsilon lmn}R^{lmn\gamma }f_{G}\right. \\&-\left. \frac{1}{2}R^{\gamma }_{\epsilon }\Box f_{G}+\frac{1}{4}R^{l\gamma }\nabla _{\epsilon }\nabla _{l}f_{G}-\frac{1}{4} R\nabla ^{\gamma }\nabla _{\epsilon }f_{G}+\frac{1}{2}R^{l}_{\epsilon }\nabla ^{\gamma }\nabla _{l} f_{G}\right. \\&+\left. \frac{1}{2}R^{\gamma }_{l\epsilon m}\nabla ^{l} \nabla ^{m}f_{G}\right] g^{\alpha \beta }\epsilon _{\delta \gamma \beta } \epsilon ^{\epsilon \delta }_{\alpha }+\left[ \frac{1}{2}R_{l\delta }R^{l\gamma }f_{G} +\frac{1}{2}R^{lm}R^{\gamma }_{l\delta m}f_{G}\right. \\&-\left. \frac{1}{4}RR^{\gamma }_{\delta }f_{G}+\frac{1}{2} R^{\gamma }_{\delta }\Box f_{G}-\frac{1}{4}R_{\delta lmn}R^{lmn\gamma }f_{G}+\frac{1}{4}R\nabla ^{\gamma }\nabla _{\delta }f_{G}\right. \\&-\left. \frac{1}{4}R^{l\gamma }\nabla _{\delta }\nabla _{l}f_{G} -\frac{1}{2}R^{\gamma }_{l\delta m}\nabla ^{l}\nabla ^{m}f_{G}-\frac{1}{2}R^{l}_{\delta }\nabla ^{\gamma }\nabla _{l} f_{G}\right] g^{\alpha \beta }\epsilon _{\epsilon \gamma \beta } \epsilon ^{\epsilon \delta }_{\alpha }\\&- 12R^{lm}\nabla _{l}\nabla _{m}h_{\alpha \beta }f_{G} +6R\Box f_{G}+\left[ \left( \mu +P\right) f_{T}+4R^{l\nu }R_{l\nu }f_{G}\right. \\&+\left. 4R^{lm}R^{\nu }_{l\nu m}f_{G}-2R^{2}f_{G}-2R\Box f_{G}-2R^{\mu }_{lmn}R^{lmn}_{\mu }f_{G}\right. \\&+\left. 16R^{lm}\nabla _{l}\nabla _{m}f_{G}-4R^{l\mu }\nabla _{\mu } \nabla _{l}f_{G}-4R^{l\nu }\nabla _{\nu }\nabla _{l}f_{G} \right. \\&-\left. 4R^{\nu }_{l\nu m}\nabla ^{l}\nabla ^{m}f_{G}\right] +\frac{1}{2}f. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousaf, Z., Bhatti, M.Z. & Hassan, K. Complexity for self-gravitating fluid distributions in f(GT) gravity. Eur. Phys. J. Plus 135, 397 (2020). https://doi.org/10.1140/epjp/s13360-020-00408-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00408-6

Navigation