Skip to main content
Log in

Torsional Vibration of nanowire with equilateral triangle cross section based on nonlocal strain gradient for various boundary conditions: comparison with hollow elliptical cross section

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The torsional vibration is an unavoidable part of the mechanical behavior of the nanoscale materials. The nanostructures always are not circular. On the contrary, they have more often noncircular cross sections. In this paper, the size-dependent free torsional vibration of a nanowire with a triangular (equilateral triangle) cross section based on the nonlocal strain gradient theory is investigated for the first time. Three different boundary conditions such as clamped–clamped (C–C), clamped-free (C-F), and clamped–torsional spring (C-T) boundary conditions are utilized. Moreover, the first three natural frequencies of a hollow circular nanowire along with the nanowire with horizontal and vertical hollow elliptical cross sections are evaluated. The equation of motion, as well as the boundary conditions, is extracted by using Hamilton’s principle. An analytical method is employed to reduce the order of the equation of motion and ultimately solve it. The nanowire model contains the material length scale parameter and nonlocal parameter, simultaneously to take into account both stiffness-hardening and stiffness-softening effects on the vibration of the system. The effects of the nondimensional material length scale parameter and nondimensional nonlocal parameter on the first four nondimensional natural frequencies of the nanowire are assessed. The influences of ea/l and nondimensional material length scale parameter, and the effects of l/ea and nondimensional nonlocal parameter on the nondimensional responses are examined. Also, the effects of the nonlocal parameter on the first three natural frequencies of the model having circular and hollow elliptical cross sections are illustrated. The results are proved to be valid compared to another study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.-J. Zhu, C.-X. Kan, J.-G. Wan, M. Han, G.-H. Wang, High-yield synthesis of uniform Ag nanowires with high aspect ratios by introducing the long-chain PVP in an improved polyol process. J. Nanomater. 2011, 40 (2011)

    Article  Google Scholar 

  2. M. Liu, P. Jin, Z. Xu, D.A. Hanaor, Y. Gan, C. Chen, Two-dimensional modeling of the self-limiting oxidation in silicon and tungsten nanowires. Theor. Appl. Mech. Lett. 6(5), 195–199 (2016)

    Article  Google Scholar 

  3. O.L. Muskens, J.G. Rivas, R.E. Algra, E.P. Bakkers, A. Lagendijk, Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 8(9), 2638–2642 (2008)

    Article  ADS  Google Scholar 

  4. S. Hong, H. Lee, J. Lee, J. Kwon, S. Han, Y.D. Suh, H. Cho, J. Shin, J. Yeo, S.H. Ko, Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv. Mater. 27(32), 4744–4751 (2015)

    Article  Google Scholar 

  5. F. Patolsky, G. Zheng, C.M. Lieber, Nanowire sensors for medicine and the life sciences. Nanomedicine 1, 51–65 (2006)

    Article  Google Scholar 

  6. D. Reich, M. Tanase, A. Hultgren, L. Bauer, C. Chen, G. Meyer, Biological applications of multifunctional magnetic nanowires. J. Appl. Phys. 93(10), 7275–7280 (2003)

    Article  ADS  Google Scholar 

  7. M.J. Bierman, S. Jin, Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ. Sci. 2(10), 1050–1059 (2009)

    Article  Google Scholar 

  8. M. Curreli, C. Li, Y. Sun, B. Lei, M.A. Gundersen, M.E. Thompson, C. Zhou, Selective functionalization of In\(_2\)O\(_3\) nanowire mat devices for biosensing applications. J. Am. Chem. Soc. 127(19), 6922–6923 (2005)

    Article  Google Scholar 

  9. X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Vertically aligned single crystal TiO\(_2\) nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 8(11), 3781–3786 (2008)

    Article  ADS  Google Scholar 

  10. A.I. Persson, M.W. Larsson, S. Stenström, B.J. Ohlsson, L. Samuelson, L.R. Wallenberg, Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater. 3(10), 677 (2004)

    Article  ADS  Google Scholar 

  11. S. Mathur, S. Barth, H. Shen, J.C. Pyun, U. Werner, Size-dependent photoconductance in SnO\(_2\) nanowires. Small 1(7), 713–717 (2005)

    Article  Google Scholar 

  12. K. Peng, Y. Xu, Y. Wu, Y. Yan, S.T. Lee, J. Zhu, Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 1(11), 1062–1067 (2005)

    Article  Google Scholar 

  13. Y. Zhu, T. Yu, F. Cheong, X. Xu, C. Lim, V. Tan, J. Thong, C. Sow, Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films. Nanotechnology 16(1), 88 (2004)

    Article  ADS  Google Scholar 

  14. B.A. Hamidi, S.A. Hosseini, R. Hassannejad, F. Khosravi, An exact solution on gold microbeam with thermoelastic damping via generalized Green–Naghdi and modified couple stress theories. J. Therm. Stresses 43, 1–18 (2019)

    Google Scholar 

  15. A.H. Hosseini, O. Rahmani, M. Nikmehr, I.F. Golpayegani, Axial vibration of cracked nanorods embedded in elastic foundation based on a nonlocal elasticity model. Sens. Lett. 14(10), 1019–1025 (2016)

    Article  Google Scholar 

  16. S.A. Hosseini, O. Rahmani, Bending and vibration analysis of curved FG nanobeams via nonlocal Timoshenko model. Smart Construct. Res. 2, 1–17 (2018)

    Article  Google Scholar 

  17. O. Rahmani, S. Hosseini, I. Ghoytasi, H. Golmohammadi, Buckling and free vibration of shallow curved micro/nano-beam based on strain gradient theory under thermal loading with temperature-dependent properties. Appl. Phys. A 123(1), 4 (2017)

    Article  ADS  Google Scholar 

  18. H. Hayati, S.A. Hosseini, O. Rahmani, Coupled twist-bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory. Microsyst. Technol. 23(7), 2393–2401 (2017)

    Article  Google Scholar 

  19. R. Sourki, S. Hosseini, Coupling effects of nonlocal and modified couple stress theories incorporating surface energy on analytical transverse vibration of a weakened nanobeam. Eur. Phys. J. Plus 132(4), 184 (2017)

    Article  Google Scholar 

  20. O. Rahmani, S. Norouzi, H. Golmohammadi, S. Hosseini, Dynamic response of a double, single-walled carbon nanotube under a moving nanoparticle based on modified nonlocal elasticity theory considering surface effects. Mech. Adv. Mater. Struct. 24(15), 1274–1291 (2017)

    Article  Google Scholar 

  21. O. Rahmani, M. Shokrnia, H. Golmohammadi, S. Hosseini, Dynamic response of a single-walled carbon nanotube under a moving harmonic load by considering modified nonlocal elasticity theory. Eur. Phys. J. Plus 133(2), 42 (2018)

    Article  Google Scholar 

  22. S. Hosseini, O. Rahmani, Exact solution for axial and transverse dynamic response of functionally graded nanobeam under moving constant load based on nonlocal elasticity theory. Meccanica 52(6), 1441–1457 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Namvar, E. Rezaei, S.A. Hosseini, M. Ghadiri, Experimental and analytical investigations of vibrational behavior of U-shaped atomic force microscope probe considering thermal loading and the modified couple stress theory. Eur. Phys. J. Plus 132(6), 247 (2017)

    Article  Google Scholar 

  24. O. Rahmani, S. Hosseini, I. Ghoytasi, H. Golmohammadi, Free vibration of deep curved FG nano-beam based on modified couple stress theory. Steel Compos. Struct. 26(5), 607–620 (2018)

    Google Scholar 

  25. O. Rahmani, S.A.H. Hosseini, H. Hayati, Frequency analysis of curved nano-sandwich structure based on a nonlocal model. Mod. Phys. Lett. B 30(10), 1650136 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Zarepour, S. Hosseini, A. Akbarzadeh, Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on Eringen’s differential model. Appl. Math. Model. 69, 563–582 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Ghadiri, S. Hosseini, M. Karami, M. Namvar, In-plane and out of plane free vibration of U-shaped AFM probes based on the nonlocal elasticity. J. Solid Mech. 10(2), 285–299 (2018)

    Google Scholar 

  28. O. Rahmani, S. Asemani, S. Hosseini, Study the surface effect on the buckling of nanowires embedded in Winkler-Pasternak elastic medium based on a nonlocal theory. J. Nanostruct. 6, 87–92 (2016)

    Google Scholar 

  29. S.A. Hosseini, F. Khosravi, M. Ghadiri, Moving axial load on dynamic response of single-walled carbon nanotubes using classical, Rayleigh and Bishop rod models based on Eringen’s theory. J. Vib. Control (2019). https://doi.org/10.1177/1077546319890170

    Article  Google Scholar 

  30. E.C. Aifantis, On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)

    Article  MATH  Google Scholar 

  31. M.M. Adeli, A. Hadi, M. Hosseini, H.H. Gorgani, Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory. Eur. Phys. J. Plus 132(9), 393 (2017)

    Article  ADS  Google Scholar 

  32. L. Li, Y. Hu, Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects. Int. J. Mech. Sci. 120, 159–170 (2017)

    Article  Google Scholar 

  33. A. Apuzzo, R. Barretta, S. Faghidian, R. Luciano, F.M. de Sciarra, Free vibrations of elastic beams by modified nonlocal strain gradient theory. Int. J. Eng. Sci. 133, 99–108 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Tang, L. Li, Y. Hu, W. Meng, K. Duan, Vibration of nonlocal strain gradient beams incorporating Poisson’s ratio and thickness effects. Thin-Walled Struct. 137, 377–391 (2019)

    Article  Google Scholar 

  35. S.S. Mirjavadi, B.M. Afshari, M.R. Barati, A. Hamouda, Transient response of porous FG nanoplates subjected to various pulse loads based on nonlocal stress–strain gradient theory. Eur. J. Mech.-A/Solids 74, 210–220 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. H. Liu, Z. Lv, H. Wu, Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory. Compos. Struct. 214, 47–61 (2019)

    Article  Google Scholar 

  37. G.-L. She, F.-G. Yuan, Y.-R. Ren, H.-B. Liu, W.-S. Xiao, Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory. Compos. Struct. 203, 614–623 (2018)

    Article  Google Scholar 

  38. G.-F. Wang, X.-Q. Feng, Timoshenko beam model for buckling and vibration of nanowires with surface effects. J. Phys. D Appl. Phys. 42(15), 155411 (2009)

    Article  ADS  Google Scholar 

  39. D. Dikin, X. Chen, W. Ding, G. Wagner, R. Ruoff, Resonance vibration of amorphous SiO\(_2\) nanowires driven by mechanical or electrical field excitation. J. Appl. Phys. 93(1), 226–230 (2003)

    Article  ADS  Google Scholar 

  40. X. Dai, F. Zhu, Z. Qian, J. Yang, Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration. Nano Energy 43, 22–28 (2018)

    Article  Google Scholar 

  41. S. Narendar, S. Ravinder, S. Gopalakrishnan, Strain gradient torsional vibration analysis of micro/nano rods. Int. J. Nano Dimens. 3(1), 1–17 (2012)

    Google Scholar 

  42. L. Li, Y. Hu, Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory. Compos. Struct. 172, 242–250 (2017)

    Article  Google Scholar 

  43. T. Murmu, S. Adhikari, C. Wang, Torsional vibration of carbon nanotube-buckyball systems based on nonlocal elasticity theory. Physica E 43(6), 1276–1280 (2011)

    Article  ADS  Google Scholar 

  44. C.W. Lim, C. Li, J. Yu, Free torsional vibration of nanotubes based on nonlocal stress theory. J. Sound Vib. 331(12), 2798–2808 (2012)

    Article  ADS  Google Scholar 

  45. C. Li, Torsional vibration of carbon nanotubes: comparison of two nonlocal models and a semi-continuum model. Int. J. Mech. Sci. 82, 25–31 (2014)

    Article  Google Scholar 

  46. R. Barretta, S.A. Faghidian, F. Marotti de Sciarra, R. Penna, F.P. Pinnola, On torsion of nonlocal Lam strain gradient FG elastic beams. Compos. Struct. 233, 111550 (2020)

    Article  Google Scholar 

  47. A. Barr, Torsional waves in uniform rods of non-circular section. J. Mech. Eng. Sci. 4(2), 127–135 (1962)

    Article  Google Scholar 

  48. S. Christides, A. Barr, Torsional vibration of cracked beams of non-circular cross-section. Int. J. Mech. Sci. 28(7), 473–490 (1986)

    Article  MATH  Google Scholar 

  49. R. Barretta, L. Feo, R. Luciano, Some closed-form solutions of functionally graded beams undergoing nonuniform torsion. Compos. Struct. 123, 132–136 (2015)

    Article  Google Scholar 

  50. N. Stephen, Comparison of dynamic torsion theories for beams of elliptical cross-section. J. Sound Vib. 100(1), 1–6 (1985)

    Article  ADS  Google Scholar 

  51. M. Elwany, A. Barr, Some optimization problems in torsional vibration. J. Sound Vib. 57(1), 1–33 (1978)

    Article  ADS  MATH  Google Scholar 

  52. P. Muller, Torsional-flexural waves in thin-walled open beams. J. Sound Vib. 87(1), 115–141 (1983)

    Article  ADS  MATH  Google Scholar 

  53. C. Lim, G. Zhang, J. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. S.S. Rao, Vibration of Continuous Systems, vol. 464 (Wiley, Hoboken, 2007)

    Google Scholar 

  55. J. He, C.M. Lilley, Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8(7), 1798–1802 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Amirhosein Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, F., Hosseini, S.A. & Hamidi, B.A. Torsional Vibration of nanowire with equilateral triangle cross section based on nonlocal strain gradient for various boundary conditions: comparison with hollow elliptical cross section. Eur. Phys. J. Plus 135, 318 (2020). https://doi.org/10.1140/epjp/s13360-020-00312-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00312-z

Navigation