Skip to main content
Log in

Distributed optimal control of a tumor growth treatment model with cross-diffusion effect

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, we examine an optimal control problem of a coupled nonlinear parabolic system with cross-diffusion operators. The system describes the density of tumor cells, effector-immune cells, circulating lymphocyte population and chemotherapy drug concentration. The distributed control has been taken for drug concentration to control the amount of drug to be injected and to evade the side effects of the drug. We prove the existence of a weak solution of the direct problem. Then, the existence of control for the proposed control problem is proved. Further, we derive the optimality conditions and also the existence of a solution of the adjoint problem. The finite element numerical method is implemented for the proposed control problem. Then, theoretical results are illustrated with the help of numerical experiments. Finally, the importance of control function and the cross-diffusion effect are studied for the proposed control problem using numerical computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. A.R.A. Anderson, Math. Med. Biol. 22, 163 (2005)

    ADS  Google Scholar 

  2. A.R.A. Anderson, M.A.J. Chaplain, E.L. Newman, R.J.C. Steele, A.M. Thompson, Comput. Math. Methods Med. 2, 129 (2000)

    Google Scholar 

  3. R.P. Araujo, D.L.S. McElwain, Bull. Math. Biol. 66, 1039 (2004)

    MathSciNet  Google Scholar 

  4. N. Bellomo, N. Li, P.K. Maini, Math. Models Methods Appl. Sci. 18, 593 (2008)

    MathSciNet  Google Scholar 

  5. M.A.J. Chaplain, M. Lachowicz, Z. Szymańska, Math. Models Methods Appl. Sci. 21, 719 (2011)

    MathSciNet  Google Scholar 

  6. H. Enderling, M.A.J. Chaplain, Curr. Pharm. Des. 20, 4934 (2014)

    Google Scholar 

  7. S. Ganesan, L. Shangerganesh, Commun. Nonlinear. Sci. Numer. Simul. 46, 135 (2017)

    ADS  MathSciNet  Google Scholar 

  8. S. Ganesan, L. Shangerganesh, Comput. Math. Appl. 73, 2603 (2017)

    MathSciNet  Google Scholar 

  9. R.A. Gatenby, E.T. Gawlinski, Cancer Res. 56, 5745 (1996)

    Google Scholar 

  10. S. Eikenberry, C. Thalhauser, Y. Kuang, PLoS Comput. Biol. 5, e1000362 (2009)

    ADS  Google Scholar 

  11. H. Chen, M.T. Kuo, Oncotarget 8, 62742 (2017)

    Google Scholar 

  12. H.C. Wei, J.L. Yu, C.Y. Hsu, Comput. Math. Methods Med. 2017, 2906282 (2017)

    Google Scholar 

  13. L.G. de Pillis, W. Gu, A.E. Radunskaya, J. Theor. Biol. 238, 841 (2006)

    Google Scholar 

  14. L.G. de Pillis, A.E. Radunskaya, J. Theor. Med. 3, 79 (2001)

    Google Scholar 

  15. S. Sharma, G. Samanta, Differ. Equ. Dyn. Syst. 24, 149 (2016)

    MathSciNet  Google Scholar 

  16. G.I. Bell, Math. Biosci. 16, 291 (1973)

    Google Scholar 

  17. N. Stepanova, Biophysics 24, 917 (1980)

    Google Scholar 

  18. S. Michelson, B. Glicksman, J. Theor. Biol. 128, 233 (1987)

    Google Scholar 

  19. U. Forys, J. Waniewski, P. Zhivkov, J. Biol. Syst. 14, 13 (2006)

    Google Scholar 

  20. A. Ciancio, A. Quartarone, UPB Sci. Bull. Ser. A 75, 125 (2013)

    Google Scholar 

  21. C. Cattani, A. Ciancio, A. de Onofrio, Math. Comput. Model. 52, 62 (2010)

    Google Scholar 

  22. V.A. Kuznetsoz, L.A. Makalkin, M.A. Talor, A.S. Perelson, Bull. Math. Biol. 56, 295 (1994)

    Google Scholar 

  23. L. Pang, Z. Zhao, X. Song, Chaos, Solitons Fractals 87, 293 (2016)

    ADS  MathSciNet  Google Scholar 

  24. P.M. Glassman, J.P. Balthasar, Cancer Biol. Med. 11, 20 (2014)

    Google Scholar 

  25. G.J. Weiner, Nat. Rev. Cancer 15, 361 (2015)

    Google Scholar 

  26. V. Anaya, M. Bendahmane, M. Sepulveda, Math. Models Methods Appl. Sci. 20, 731 (2010)

    MathSciNet  Google Scholar 

  27. P. Hinow, P. Gerlee, L.J. McCawley, V. Quaranta, M. Ciobanu, S. Wang, J.M. Graham, B.P. Ayati, J. Claridge, K.R. Swanson, M. Loveless, Math. Biosci. Eng. 6, 521 (2009)

    MathSciNet  Google Scholar 

  28. K.M. Owolabi, K.C. Patidar, A. Shikongo, Commun. Math. Biol. Neurosci. 2018, 21 (2018)

    Google Scholar 

  29. M. Bendahmane, M. Langlais, J. Evol. Equ. 10, 883 (2010)

    MathSciNet  Google Scholar 

  30. M. Bendahmane, T. Lepoutre, A. Marrocco, B. Perthame, J. Math. Pures Appl. 92, 651 (2009)

    MathSciNet  Google Scholar 

  31. L. Chen, A. Jungel, J. Differ. Equ. 224, 39 (2006)

    ADS  Google Scholar 

  32. M. Delgado, M. Montenegro, A. Suarez, J. Differ. Equ. 246, 2131 (2009)

    ADS  Google Scholar 

  33. G. Galiano, Comput. Math. Appl. 64, 1927 (2012)

    MathSciNet  Google Scholar 

  34. R. Ruiz-Baier, C. Tian, Nonlinear Anal. Real World Appl. 14, 601 (2013)

    MathSciNet  Google Scholar 

  35. G. Marinoschi, J. Biol. Dyn. 7, 88 (2013)

    MathSciNet  Google Scholar 

  36. A.L.A. de Araujo, P.M.D. de Magalhaes, J. Math. Anal. Appl. 421, 842 (2015)

    MathSciNet  Google Scholar 

  37. P. Colli, G. Gilardi, E. Rocca, J. Sprekels, Nonlinearity 30, 2518 (2017)

    ADS  MathSciNet  Google Scholar 

  38. T. Galochkina, A. Bratus, V.M.P. Garcia, Math. Biosci. 267, 1 (2015)

    MathSciNet  Google Scholar 

  39. S. Esmaili, M.R. Eslahchi, J. Optim. Theory Appl. 173, 1013 (2017)

    MathSciNet  Google Scholar 

  40. A. Belmiloudi, Int. J. Biomath. 10, 1750056 (2017)

    MathSciNet  Google Scholar 

  41. D.A. Knopoff, D.R. Fernandez, G.A. Torres, C.V. Turner, Comput. Math. Appl. 66, 1104 (2013)

    MathSciNet  Google Scholar 

  42. U. Ledzewicz, M. Naghnaeian, H. Schattler, J. Math. Biol. 64, 557 (2012)

    MathSciNet  Google Scholar 

  43. U. Ledzewicz, H. Schattler, J. Optim. Theory Appl. 153, 195 (2012)

    MathSciNet  Google Scholar 

  44. M. Bendahmane, N. Chamakuri, E. Comte, B.E. Ainseba, J. Math. Anal. Appl. 437, 972 (2016)

    MathSciNet  Google Scholar 

  45. A.A.I. Quiroga, D. Fernandez, G.A. Torres, C.V. Turner, Appl. Math. Comput. 270, 358 (2015)

    MathSciNet  Google Scholar 

  46. S.P. Chakrabarty, F.B. Hanson, Math. Biosci. 219, 129 (2009)

    MathSciNet  Google Scholar 

  47. E. Sakine, M.R. Eslahchi, Int. J. Control 92, 2712 (2018)

    Google Scholar 

  48. P. Liu, X. Liu, Chaos, Solitons Fractals 98, 7 (2017)

    ADS  MathSciNet  Google Scholar 

  49. M. Bendahmane, K.H. Karlsen, Netw. Heterog. Media 1, 185 (2006)

    MathSciNet  Google Scholar 

  50. F. Hecht, J. Numer. Math. 20, 251 (2012)

    MathSciNet  Google Scholar 

  51. T.A. Davis, ACM Trans. Math. Softw. 30, 196 (2004)

    Google Scholar 

  52. T.A. Davis, ACM Trans. Math. Softw. 30, 167 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Debbouche.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sowndarrajan, P.T., Manimaran, J., Debbouche, A. et al. Distributed optimal control of a tumor growth treatment model with cross-diffusion effect. Eur. Phys. J. Plus 134, 463 (2019). https://doi.org/10.1140/epjp/i2019-12866-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12866-8

Navigation