Skip to main content
Log in

Numerical investigation in comparing the influence of water-silver-magnesium oxide hybrid nanofluid and water-silver normal nanofluid on fluid flow, heat transfer and entropy generation in an enclosure with rotating heat sources

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Hybrid nanofluids are made of a base fluid and at least two different types of nanoparticles. The main purpose of using hybrid nanofluids is that they have better thermophysical properties comparing to that of nanofluids with single nanoparticles. In this paper, a comparison between water-silver-magnesium oxide hybrid nanofluid and water-silver nanofluid’s influence on the flow field, heat transfer and entropy generation in an enclosure with rotating heat sources have been investigated. The study has been done for a Grashof number of 104, a Richardson number from 0.3 to 100 and for volume fractions of 0 to 0.01 of nanoparticles. The governing equations are solved numerically using the finite volume method and the SIMPLER algorithm with a computer program using FORTRAN programming language. The results show that in all of Richardson numbers with the increment in volume fraction of nanoparticles, the maximum size of the flow function has been reduced. For all of the investigated Richardson numbers and water-silver nanofluid and water-silver-magnesium oxide hybrid nanofluid with an increment in volume fraction of nanoparticles, the maximum size of the flow function has been reduced. The maximum values of the flow function for conventional nanofluid are greater than for hybrid nanofluid. The increment of the Nusselt number with increasing the volume fraction of nanoparticles in conventional nanofluid is more sensible comparing to hybrid nanofluid. Also with increasing the volume fraction of nanoparticles, the friction and thermal entropy generation is more sensible in conventional nanofluid comparing to hybrid nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fatih Selimefendigil, Muneer A. Ismael, Ali J. Chamkha, Int. J. Mech. Sci. 124--125, 95 (2017)

    Article  Google Scholar 

  2. Samy M. Elsherbiny, Mohamed A. Teamah, Atef R. Moussa, Exp. Therm. Fluid Sci. 82, 459 (2017)

    Article  Google Scholar 

  3. Tongsheng Wang, Zhu Huang, Guang Xi, Int. J. Heat Mass Transfer 106, 1063 (2017)

    Article  Google Scholar 

  4. M. Muthtamilselvan, K. Periyadurai, Deog Hee Doh, Int. J. Heat Mass Transfer 115, 19 (2017)

    Article  Google Scholar 

  5. A. Arefmanesh, A. Aghaei, H. Ehteram, Appl. Math. Model. 40, 815 (2016)

    Article  MathSciNet  Google Scholar 

  6. M. Hemmat Esfe, A. Abbasian Arani, W. Yan, H. Ehteram, A. Aghaie, M. Afrand, Int. J. Heat Mass Transfer 92, 76 (2016)

    Article  Google Scholar 

  7. Abhipsit Kumar Singh, Nanda Kishore, Int. J. Therm. Sci. 122, 326 (2017)

    Article  Google Scholar 

  8. N. Nithyadevi, A. Shamadhani Begum, Hakan F. Oztop, Nidal Abu-Hamdeh, Int. J. Heat Mass Transfer 113, 716 (2017)

    Article  Google Scholar 

  9. K. Mehmood, S. Hussain, M. Sagheer, Int. J. Heat Mass Transfer 109, 397 (2017)

    Article  Google Scholar 

  10. Faroogh Garoosi, Farhad Talebi, Adv. Powder Technol. 28, 1668 (2017)

    Article  Google Scholar 

  11. Ali Arefmanesh, Alireza Aghaei, Hamidreza Ehteram, Appl. Math. Model. 40, 815 (2016)

    Article  MathSciNet  Google Scholar 

  12. M. Famouri, K. Hooman, Int. Commun. Heat Mass Transf. 35, 492 (2008)

    Article  Google Scholar 

  13. A. Mukhopadhyay, Int. Commun. Heat Mass Transf. 37, 867 (2010)

    Article  Google Scholar 

  14. M. Shahi, A.H. Mahmoudi, A. Honarbakhsh Raouf, Int. Commun. Heat Mass Transf. 38, 972 (2011)

    Article  Google Scholar 

  15. H. Khorasanizadeh, J. Amani, M. Nikfar, Sci. Iran. F 19, 1996 (2012)

    Article  Google Scholar 

  16. C. Cho, C. Chen, K. Chen, Int. J. Heat Mass Transfer 61, 749 (2013)

    Article  Google Scholar 

  17. M. Magherbi, H. Abbassi, A. Ben Brahim, Int. J. Heat Mass Transfer 46, 3441 (2003)

    Article  Google Scholar 

  18. L.B. Erbay Altac, B. Sulus, Entropy 5, 496 (2003)

    Article  ADS  Google Scholar 

  19. S. Mahmud, A.K.M. Sadrul Islam, Int. J. Therm. Sci. 42, 1003 (2003)

    Article  Google Scholar 

  20. P.K. Singh, K.B. Anoop, T. Sundararajan, S.K. Das, Int. J. Heat Mass Transfer 53, 4757 (2010)

    Article  Google Scholar 

  21. R.M. Kaluri, T. Basak, Int. J. Heat Mass Transfer 54, 2578 (2011)

    Article  Google Scholar 

  22. T. Basak, R.S. Kaluri, A.R. Balakrishnan, Numer. Heat Transf. 59, 372 (2011)

    Article  Google Scholar 

  23. H. Oztop, M.M. Rahman, A. Ahsan, M. Hasanuzzaman, R. Saidur, Khaled Al-Salem, N.A. Rahim, Int. J. Heat Mass Transfer 55, 1844 (2012)

    Article  Google Scholar 

  24. Xu.Xu. Zi-Tao Yu, Hu. Ya-Cai, Li-Wu Fan, Ke-Fa Cen, Int. J. Heat Mass Transfer 55, 1141 (2012)

    Article  Google Scholar 

  25. E. Abu-Nada, Z. Masoud, A. Hijazi, Int. Commun. Heat Mass Transf. 35, 657 (2008)

    Article  Google Scholar 

  26. Frank P. Incropera, David P. De Witt, Theodore, L. Bergman, Adrienne S. Lavine, Introduction to Heat Transfer, 5th Edition (John Wiley & Sons, Inc., 2006)

  27. Mohammad Hemmat Esfe, Seyfolah Saedodin, Mojtaba Biglari, Hadi Rostamia, Int. Commun. Heat Mass Transf. 74, 91 (2016)

    Article  Google Scholar 

  28. Mohammad Hemmat Esfe, Ali Akbar Abbasian Arani, Mohammad Rezaie, Wei-Mon Yan, Arash Karimipour, Int. Commun. Heat Mass Transf. 66, 189 (2015)

    Article  Google Scholar 

  29. A.J. Chamkhaa, E. Abu-Nada, Eur. J. Mech. B/Fluids 36, 82 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  30. R.D.C. Oliveski, M.H. Macagnan, J.B. Copetti, Appl. Therm. Eng. 29, 1417 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Jamiatia.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamiatia, M. Numerical investigation in comparing the influence of water-silver-magnesium oxide hybrid nanofluid and water-silver normal nanofluid on fluid flow, heat transfer and entropy generation in an enclosure with rotating heat sources. Eur. Phys. J. Plus 134, 405 (2019). https://doi.org/10.1140/epjp/i2019-12750-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12750-7

Navigation