Skip to main content
Log in

Thermal optimization of Curzon-Ahlborn heat engines operating under some generalized efficient power regimes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In order to establish better performance compromises between the process functionals of a heat engine, in the context of finite-time thermodynamics (FTT), we propose some generalizations for the well-known Efficient Power function through certain variables called “Generalization Parameters”. These generalization proposals show advantages in the characterization of operation modes for an endoreversible heat engine model. In particular, we introduce the k-Efficient Power regime. For this objective function we find the performance of the operation of some power plants through the parameter k . Likewise, for plants that operate in a low-efficiency zone, within a configuration space, the k parameter allows us to generate conditions for these plants to operate inside of a high-efficiency and low-dissipation zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Carnot, Réflexions sur la Puissance Motrice du Feu, et sur les Machines Propres à Développer cette Puissance (Bachelier Libraire, Paris, 1824) (in French)

  2. H.T. Odum, R.C. Pinkerton, Am. Sci. 43, 331 (1955)

    Google Scholar 

  3. O. Kedem, S.R. Caplan, Trans. Faraday Soc. 21, 1897 (1965)

    Article  Google Scholar 

  4. J.W. Stucki, Eur. J. Biochem. 109, 269 (1980)

    Article  Google Scholar 

  5. M. Santillán, L.A. Arias-Hernández, F. Angulo-Brown, Nuovo Cimento D 19, 99 (1997)

    ADS  Google Scholar 

  6. L.A. Arias-Hernandez, F. Angulo-Brown, R.T. Paez-Hernandez, Phys. Rev. E 77, 011123 (2008)

    Article  ADS  Google Scholar 

  7. G. Valencia-Ortega, L.A. Arias-Hernandez, J. Non-Equilib. Thermodyn. 42, 187 (2017)

    Article  ADS  Google Scholar 

  8. K.H. Hoffmann, J.M. Burzler, S. Schubert, J. Non-Equilib. Thermodyn. 22, 311 (1997)

    Google Scholar 

  9. C. Wu, L. Chen, J. Chen, Recent Advances in Finite Time Thermodynamics (Nova Science, New York, 1999)

  10. A. Durmayaz et al., Prog. Energy Combust. Sci. 30, 175 (2004)

    Article  Google Scholar 

  11. S. Petrescu et al., Int. J. Energy Res. 26, 589 (2002)

    Article  Google Scholar 

  12. J. McGovern, Proceedings of the ASME 2010 4th International Conference on Energy Sustainability, Phoenix, 2010, Vol. 2 (ASME, Arizona, 2010)

  13. H. Feng, L. Chen, F. Sun, Int. J. Sustain. Energy 30, 321 (2011)

    Article  Google Scholar 

  14. L.G. Chen, H.J. Feng, F.R. Sun, J. Energy Inst. 84, 105 (2011)

    Article  Google Scholar 

  15. J. Yu, Y. Zhou, Y. Liu, Int. J. Refrig. 34, 567 (2011)

    Article  Google Scholar 

  16. G. Grazzini, A. Rocchetti, Energy Convers. Manag. 84, 583 (2014)

    Article  Google Scholar 

  17. M. Feidt, Thermodynamique optimale en dimensions physiques finies (Hermes, Paris, 2013) (in French)

  18. M. Feidt, Finite Physical Dimension Optimal Thermodynamics 1-Fundamentals (ISTE Press Elsevier, London, 2017)

  19. M.A. Barranco-Jimenez, F. Angulo-Brown, J. Appl. Phys. 80, 4872 (1996)

    Article  ADS  Google Scholar 

  20. P.L. Curto-Risso et al., Appl. Energy 88, 1557 (2011)

    Article  Google Scholar 

  21. S. Sánchez-Orgaz, A. Medina, A. Calvo Hernández, Energy Convers. Manag. 67, 171 (2013)

    Article  Google Scholar 

  22. A. De Vos, Energy Convers. Manag. 36, 1 (1995)

    Article  Google Scholar 

  23. T. Miyazaki et al., Energy 25, 639 (2000)

    Article  Google Scholar 

  24. A. Dhar, A. Kumar Agarwal, Fuel 119, 70 (2014)

    Article  Google Scholar 

  25. J.J. Silva-Martinez, L.A. Arias-Hernandez, Rev. Mex. Fis. S 59, 192 (2013)

    Google Scholar 

  26. A. De Vos, Endoreversible Thermodynamics of Solar Energy Conversion (Oxford University Press, New York, 1992)

  27. L.A. Arias-Hernandez, G. Ares de Parga, F. Angulo-Brown, Open Syst. Inf. Dyn. 10, 351 (2003)

    Article  Google Scholar 

  28. A. Bejan, Advanced Engineering Thermodynamics (Wiley, New York, 1988)

  29. A. Bejan, J. Appl. Phys. 79, 1191 (1996)

    Article  ADS  Google Scholar 

  30. K.H. Hoffmann et al., J. Non-Equilib. Thermodyn. 28, 233 (2003)

    Article  ADS  Google Scholar 

  31. L. Chen, F. Sun, Advances in Finite Time Thermodynamics: Analysis and Optimization (Nova Science, New York, 2004)

  32. P. Chambadal, Les centrales nucléaires (Armand Colins, Paris, 1957) (in French)

  33. I.I. Novikov, J. Nucl. Energy 7, 125 (1958)

    Google Scholar 

  34. F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)

    Article  ADS  Google Scholar 

  35. J. Gonzalez-Ayala, L.A. Arias-Hernandez, F. Angulo-Brown, Phys. Rev. E 88, 052142 (2013)

    Article  ADS  Google Scholar 

  36. J. Gonzalez-Ayala, L.A. Arias-Hernandez, F. Angulo-Brown, Eur. Phys. J. B 90, 86 (2017)

    Article  ADS  Google Scholar 

  37. D. Gutkowicz-Krusin, I. Procaccia, J. Ross, J. Chem. Phys. 69, 3898 (1978)

    Article  ADS  Google Scholar 

  38. C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005)

    Article  ADS  Google Scholar 

  39. M. Esposito et al., Phys. Rev. Lett. 105, 150603 (2010)

    Article  ADS  Google Scholar 

  40. J. Anacleto, J.M. Ferreira, Eur. J. Phys. 31, L1 (2010)

    Article  Google Scholar 

  41. F. Angulo-Brown, J. Appl. Phys. 69, 7465 (1991)

    Article  ADS  Google Scholar 

  42. L.A. Arias-Hernandez, F. Angulo-Brown, J. Appl. Phys. 81, 2973 (1997)

    Article  ADS  Google Scholar 

  43. A. Calvo-Hernández et al., Phys. Rev. E 63, 037102 (2001)

    Article  ADS  Google Scholar 

  44. M. Feidt, Entropy 11, 529 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  45. L.A. Arias-Hernandez, F. Angulo-Brown, J. Appl. Phys. 89, 1520 (2001)

    Article  ADS  Google Scholar 

  46. L. Partido-Tornez, Aplicación de los criterios omega y ecológico generalizados a diferentes convertidores de energ\'ia, Master Thesis, ESFM-IPN, México 2006

  47. S. Levario-Medina, Estudio del desempeño energético de un motor térmico operando a potencia eficiente generalizada, Master Thesis, ESFM-IPN, Memorias de la RNAFyM, http://w3.esfm.ipn.mx/documentos/RNAFyM/RNAFyM2016.pdf

  48. L.A. Arias-Hernandez, G. Ares de Parga, F. Angulo-Brown, Open Syst. Inf. Dyn. 11, 123 (2004)

    Article  MathSciNet  Google Scholar 

  49. T. Yilmaz, J. Energy. Inst. 79, 38 (2006)

    Article  Google Scholar 

  50. E.P. Gyftopoulos, Energy Convers. Manag. 38, 1525 (1997)

    Article  Google Scholar 

  51. M.J. Moran, Energy 23, 517 (1998)

    Article  Google Scholar 

  52. M.J. Moran, Proceedings of the Congress ECOS 1998 11th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Nancy, 1998, edited by A. Bejan, M. Feidt, M.J. Moran, G. Tsatsaronis, (ECOS, France, 1998) pp. 1147--1150

  53. F. Angulo-Brown, J, Fernández-Betanzos, C.A. Pico, Eur. J. Phys. 15, 38 (1994)

    Article  Google Scholar 

  54. F. Angulo-Brown, J.A. Rocha-Martínez, T.D. Navarrete-González, J. Phys. D 29, 80 (1996)

    Article  ADS  Google Scholar 

  55. A. Fischer, K.H. Hoffmann, J. Non-Equilib. Thermodyn. 29, 9 (2004)

    Article  ADS  Google Scholar 

  56. P.L. Curto Risso, A. Medina, A. Calvo Hernández, J. Appl. Phys. 104, 094911 (2008)

    Article  ADS  Google Scholar 

  57. P.L. Curto Risso, A. Medina, A. Calvo Hernández, J. Appl. Phys. 105, 094904 (2009)

    Article  ADS  Google Scholar 

  58. P.L. Curto Risso, A. Medina, A. Calvo Hernández, Proceedings of the Congress ECOS 2009 22th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Foz do Iguaçú, 2009, edited by Curran Associated Inc., Vol. 3 (Curran Associates Inc., Brazil, 2014)

  59. P.L. Curto Risso, A. Medina, A. Calvo Hernández, Appl. Therm. Eng. 31, 803 (2011)

    Article  Google Scholar 

  60. D.A. Rojas-Gamboa et al., Phys. Rev. E 98, 022130 (2018)

    Article  ADS  Google Scholar 

  61. Y. Zhang et al., J. Non-Equilib. Thermodyn. 42, 253 (2017)

    Article  ADS  Google Scholar 

  62. J. Zhou et al., Energy 111, 306 (2016)

    Article  Google Scholar 

  63. T.E. Humphrey et al., Phys. Rev. Lett. 89, 116801 (2002)

    Article  ADS  Google Scholar 

  64. N. Nakpathomkun, H.Q. Xu, H. Linke, Phys. Rev. B 82, 235428 (2010)

    Article  ADS  Google Scholar 

  65. www.johnstonsarchive.net/environment/nuclearplants.html

  66. www.ree.es/sites/default/download-ble/inf_sis_elec_2014_v2.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Levario-Medina.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levario-Medina, S., Valencia-Ortega, G. & Arias-Hernandez, L.A. Thermal optimization of Curzon-Ahlborn heat engines operating under some generalized efficient power regimes. Eur. Phys. J. Plus 134, 348 (2019). https://doi.org/10.1140/epjp/i2019-12711-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12711-2

Navigation