Skip to main content
Log in

Field data-based modeling of lateral ground surface deformations due to earthquake-induced liquefaction

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Liquefaction is one of the most damaging consequences of an earthquake. Lateral ground surface deformations occur due to soil liquefaction. The magnitude of lateral deformations can be small or large depending on the seismic characteristics, soil deposit properties, and ground slope. A safe design in the liquefaction-prone regions requires an accurate estimation of lateral ground deformations. In this study, a wide-ranging data of real lateral ground deformations induced by past earthquakes were gathered and analyzed. Using the adaptive neuro-fuzzy inference system, a robust model was developed to predict lateral ground deformations. The sensitivity analysis was performed in order to investigate the behavior of the developed model under various conditions. Finally, the proposed model was compared with the available relationships for the estimation of lateral ground surface deformations. The results demonstrate reasonable accuracy of the proposed model for estimating lateral ground deformations induced by liquefaction. Indeed, this can be considered as an effective step to reduce uncertainty in geotechnical earthquake analyses in liquefaction-prone areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Samui, D. Kim, R. Hariharan, Environ. Earth. Sci. 74, 5581 (2015)

    Article  Google Scholar 

  2. D. Gautam, F.S. de Magistris, G. Fabbrocino, Soil Dyn. Earthq. Eng. 97, 37 (2017)

    Article  Google Scholar 

  3. K.O. Cetin, T.L. Youd, R.B. Seed, J.D. Bray, R. Sancio, W. Lettis, M.T. Yilmaz, H.T. Durgunoglu, Soil Dyn. Earthq. Eng. 22, 1083 (2002)

    Article  Google Scholar 

  4. G. Zhang, P.K. Robertson, R.W.I. Brachman, J. Geotech. Geoenviron. Eng. 130, 861 (2004)

    Article  Google Scholar 

  5. M.H. Baziar, A. Ghorbani, Soil Dyn. Earthq. Eng. 25, 1 (2005)

    Article  Google Scholar 

  6. W.M. Al Bawwab, Probabilistic assessment of liquefaction-induces lateral ground deformations, PhD Thesis, Department of Civil Engineering, Middle East Technical University, Ankara, Turkey (2005)

  7. S.L. Kramer, D.A. Baska, J. Geotech. Geoenviron. Eng. 111, 772 (2007)

    Google Scholar 

  8. Y. Jafarian, H. Javdanian, A. Haddad, Soil Dyn. Earthq. Eng. 107, 339 (2018)

    Article  Google Scholar 

  9. Y. Jafarian, H. Javdanian, A. Haddad, Soils Found. 58, 172 (2018)

    Article  Google Scholar 

  10. Y. Jafarian, H. Javdanian, Int. J. Civ. Eng. (2019) https://doi.org/10.1007/s40999-019-00402-9

  11. Y. Jafarian, H. Javdanian, Geo-Mar. Lett. 38, 315 (2018)

    Article  ADS  Google Scholar 

  12. H. Javdanian, Bull. Eng. Geol. Environ. 78, 1697 (2019)

    Article  Google Scholar 

  13. Y. Jafarian, B. Mehrzad, C.J. Lee, A.H. Haddad, Soil Dyn. Earthq. Eng. 97, 184 (2017)

    Article  Google Scholar 

  14. F. Kalantary, H. Mola Abasi, M. Salahi, M. Veiskarami, Sci. Iran. 20, 242 (2013)

    Google Scholar 

  15. L. Su, L. Tang, X. Ling, C. Liu, X. Zhang, Soil Dyn. Earthq. Eng. 82, 196 (2016)

    Article  Google Scholar 

  16. O. Ghasemi, A. Pak, Soil Dyn. Earthq. Eng. 89, 233 (2016)

    Article  Google Scholar 

  17. M. Rezania, A. Faramarzi, A.A. Javadi, Eng. Appl. Artif. Intel. 24, 142 (2011)

    Article  Google Scholar 

  18. A.A. Javadi, M. Rezania, M. Mousavi Nezhad, Comput. Geotech. 33, 222 (2006)

    Article  Google Scholar 

  19. H. Javdanian, H.R. Zarif Sanayei, L. Shakarami, Sci. Iran. (2018) https://doi.org/10.24200/sci.2018.50483.1716

  20. S.F. Bartlett, T.L. Youd, J. Geotech. Eng. 121, 316 (1995)

    Article  Google Scholar 

  21. X. Xue, E. Liu, Environ. Earth. Sci. 76, 192 (2017)

    Article  Google Scholar 

  22. M.H. Baziar, Y. Jafarian, Soil Dyn. Earthq. Eng. 27, 1056 (2007)

    Article  Google Scholar 

  23. H. Javdanian, Model. Earth Syst. Environ. 3, 1045 (2017)

    Article  Google Scholar 

  24. H. Javdanian, A. Haddad, A. Jafarian, Transp. Infrastruct. Eng. 1, 77 (2015)

    Google Scholar 

  25. Y. Jafarian, A. Haddad, H. Javdanian, Acta Geodyn. Geomater. 11, 89 (2014)

    Google Scholar 

  26. V.M. Wagh, D.B. Panaskar, A.A. Muley, Model. Earth Syst. Environ. 3, 36 (2017)

    Article  Google Scholar 

  27. B. Pradhan, S. Lee, Environ. Earth Sci. 60, 1037 (2010)

    Article  Google Scholar 

  28. I.N. Aghdam, B. Pradhan, M. Panahi, Environ. Earth Sci. 76, 237 (2017)

    Article  Google Scholar 

  29. S. Lee, S.M. Hong, H.S. Jung, Sustainability 9, 48 (2017)

    Article  Google Scholar 

  30. H. Javdanian, S. Lee, Eng. Comput. 35, 191 (2018)

    Article  Google Scholar 

  31. B. Gordan, D.J. Armaghani, M. Hajihassani, M. Monjezi, Eng. Comput. 32, 85 (2016)

    Article  Google Scholar 

  32. H. Javdanian, A. Haddad, B. Mehrzad, Electronic J. Geotech. Eng. 17, 2597 (2012)

    Google Scholar 

  33. H. Javdanian, B. Pradhan, Landslides 16, 91 (2019)

    Article  Google Scholar 

  34. Y. Jafarian, A. Haddad, H. Javdanian, Comparing the shear stiffness of calcareous and silicate sands under dynamic and cyclic straining, in Proceedings of the 7th International Conference of Seismology and Earthquake Engineering (SEE7), 18 May, Tehran, Iran, 2015

  35. J.P. Bardet, N. Mace, T. Tobita, Liquefaction-induced ground deformation and failure, a report to PEER/PG&E. Task 4A - Phase 1, Civil Eng. Dept, University of Southern California, Los Angeles (1999)

  36. S.F. Bartlett, T.L. Youd, Empirical Analysis of horizontal ground displacement generated by Liquefaction-induced lateral spreads, Technical Report No. NCEER-92-0021, National Center for Earthquake Engineering Research, State University of New York (1992)

  37. T.L. Youd, C.M. Hansen, S.F. Bartlett, J. Geotech. Geoenviron. Eng. 128, 1007 (2002)

    Article  Google Scholar 

  38. A. Kanibir, Investigation of the lateral spreading at Sapanca and suggestion of empirical relationships for predicting lateral spreading, MSc Thesis, Department of Geological Engineering, Hacettepe University, Ankara, Turkey (2003)

  39. N.N. Ambraseys, J.M. Menue, Earthq. Eng. Struct. D 16, 985 (1988)

    Article  Google Scholar 

  40. H. Javdanian, Int. J. Eng. Trans. B Appl. 30, 1673 (2017)

    Google Scholar 

  41. A.M. Handhal, Model. Earth Syst. Environ. 2, 1 (2016)

    Article  Google Scholar 

  42. F.H. Fashi, Model. Earth Syst. Environ. 2, 197 (2016)

    Google Scholar 

  43. H. Javdanian, Y. Jafarian, A. Haddad, Arab. J. Geosci. 8, 3959 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Javdanian.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javdanian, H. Field data-based modeling of lateral ground surface deformations due to earthquake-induced liquefaction. Eur. Phys. J. Plus 134, 297 (2019). https://doi.org/10.1140/epjp/i2019-12630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12630-2

Navigation