Skip to main content
Log in

Effects of sphericity coefficient and fuel type on flame propagation inside an obstructed chamber

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The recognition of the flame propagation is a significant issue for the safety and protections in various industrial plants. In this research, computational fluid dynamic is applied to simulate the flow features and flame deflagration inside a confined chamber with obstacles. This study has focused on the transient progress of flame to determine the main effective parameters affecting flow feature and flame propagation. In order to simulate the limited obstacle channel, a three-dimensional model is developed using large eddy simulation (LES) technique. The effects of the obstacle geometry on the flame propagation are comprehensively investigated. Moreover, the influence of various gases (acetylene, hydrogen, methane, propane and butane) on the deflagration progress is thoroughly studied to recognize the main characteristics of the flame structure. Our results show that the flame propagation significantly decreases as the shape of the obstacle becomes similar to a sphere. Our findings also demonstrate that the peak pressure of the flame rises considerably when gases with high multiplying of density and laminar burning velocity (such as acetylene) are blasted inside a limited channel. Quantitative assessment showed that the explosion overpressure has inverse relation with the sphericity coefficient by the power of 2.07 and direct relation with the fuel type through an exponential function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.B. Gerdroodbary, K. Fallah, H. Pourmirzaagha, Acta Astronaut. 132, 25 (2017)

    Article  ADS  Google Scholar 

  2. A. Hassanvand, M. Barzegar Gerdroodbary, Keivan Fallah, Rasoul Moradi, Int. J. Hydrogen Energy 43, 9829 (2018)

    Article  Google Scholar 

  3. K. Fallah, M.B. Gerdroodbary, A. Ghaderi, J. Alinejad, Aerospace Sci. Technol. 76, 187 (2018)

    Article  Google Scholar 

  4. R. Moradi, A. Mahyari, M.B. Gerdroodbary, A. Abdollahi, Y. Amini, Int. J. Hydrogen Energy 43, 16364 (2018)

    Article  Google Scholar 

  5. M.B. Gerdroodbary, Y. Amini, D.D. Ganji, M.R. Takam, Adv. Space Res. 59, 1330 (2017)

    Article  ADS  Google Scholar 

  6. D. Bradley, T.M. Cresswell, J.S. Puttock, Combust. Flame 124, 551 (2001)

    Article  Google Scholar 

  7. J. Bull, A critical review of post Piper-Alpha developments in explosion science for the offshore industry, prepared by Firebrand International Ltd. for the HSE (2004)

  8. G.A. Chamberlain, J.R. Rowson, Gas explosion experiments in congested plant partially filled with fuel-air mixtures, in Major hazards offshore: Conference (2000) pp. 4--2

  9. R. Kumar, E. Bowles, K. Mintz, Combust. Flame 89, 320 (1992)

    Article  Google Scholar 

  10. M. Barzegar Gerdroodbary, D.D. Ganji, Y. Amini, Acta Astronaut. 115, 422 (2015)

    Article  Google Scholar 

  11. R. Moradi, M. Mosavat, M. Barzegar Gerdroodbary, A. Abdollahi, Younes Amini, Acta Astronaut. 151, 487 (2018)

    Article  ADS  Google Scholar 

  12. A. Anazadehsayed, M.B. Gerdroodbary, Y. Amini, R. Moradi, Acta Astronaut. 137, 403 (2017)

    Article  ADS  Google Scholar 

  13. S. Patel, S. Jarvis, S. Ibrahim, G. Hargrave, Proc. Combust. Inst. 29, 1849 (2002)

    Article  Google Scholar 

  14. V. Sarli, A. Benedetto, G. Russo, S. Jarvis, E. Long, G. Hargrave, Flow, Turb. Combust. 83, 227 (2009)

    Article  Google Scholar 

  15. Xiaoping Wen, Minggao Yu, Zhichao Liu, Wence Sun, J. Loss Prev. Process Ind. 25, 730 (2012)

    Article  Google Scholar 

  16. Sreenivasa Rao Gubba, Salah S. Ibrahim, Weertunge Malalasekera, Assaad R. Masri, Combust. Theory Modell. 13, 513 (2009)

    Article  ADS  Google Scholar 

  17. Sreenivasa Rao Gubba, Salah S. Ibrahim, Weertunge Malalasekera, Assaad R. Masri, Combust. Flame 158, 2465 (2011)

    Article  Google Scholar 

  18. V.V. Molkov, D.V. Makarov, H. Schneider, Int. J. Hydrogen Energy 32, 2198 (2007)

    Article  Google Scholar 

  19. Vladimir L. Zimont, Flow, Turb. Combust. 97, 875 (2016)

    Article  Google Scholar 

  20. Chaoyi Xu, Lixin Cong, Zhe Yu, Zhanbing Song, Mingshu Bi, J. Loss Prev. Process Ind. 34, 218 (2015)

    Article  Google Scholar 

  21. Luis Tay-Wo-Chong, Alessandro Scarpato, Wolfgang Polifke, LES combustion model with stretch and heat loss effects for prediction of premix flame characteristics and dynamics, in ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition (Am. Soc. Mech. Eng., 2017) pp. V04AT04A029--V04AT04A029

  22. V.D. Sarli, A.D. Benedetto, G. Russo, J. Hazard. Mater. 169, 435 (2009)

    Article  Google Scholar 

  23. V.D. Sarli, A.D. Benedetto, G. Russo, J. Hazard. Mater. 180, 71 (2010)

    Article  Google Scholar 

  24. V.D. Sarli, A.D. Benedetto, G. Russo, Chem. Eng. Sci. 71, 539 (2011)

    Article  Google Scholar 

  25. V. Yakhot, S. Orszag, Phys. Rev. Lett. 57, 1722 (1986)

    Article  ADS  Google Scholar 

  26. V. Molkov, D. Makarov, H. Schneider, J. Phys. D 39, 4366 (2006)

    Article  ADS  Google Scholar 

  27. V. Yakhot, S.A. Orszag, J. Sci. Comput. 1, 3 (1986)

    Article  MathSciNet  Google Scholar 

  28. V.L. Zimont, V. Battaglia, Flow, Turb. Combust. 77, 305 (2006)

    Article  Google Scholar 

  29. H. Xiao, D. Makarov, J. Sun, V. Molkov, Combust. Flame 159, 1523 (2011)

    Article  Google Scholar 

  30. H. Pitsch, Fluid Mech. 38, 453 (2006)

    Article  ADS  Google Scholar 

  31. F. Charlette, C. Meneveau, D. Veynante, Combust. Flame 131, 159 (2002)

    Article  Google Scholar 

  32. T. Poinsot, D. Veynante, Theoretical and numerical combustion, 2nd edition (R.T. Edwards, Inc., 2005)

  33. V. Molkov, D. Makarov, H. Schneider, Int. J. Hydrogen Energy 32, 2198 (2007)

    Article  Google Scholar 

  34. M. Sheikholeslami, M. Barzegar Gerdroodbary, R. Moradi, Ahmad Shafee, Zhixiong Li, Comput. Methods Appl. Mech. Eng. 344, 1 (2019)

    Article  ADS  Google Scholar 

  35. Mojtaba Mokhtari, M. Barzegar Gerdroodbary, Rezvan Yeganeh, K. Fallah, Eng. Sci. Technol. 20, 1106 (2017)

    Google Scholar 

  36. Saman Hariri, Mojtaba Mokhtari, M. Barzegar Gerdroodbary, Keivan Fallah, Eur. Phys. J. Plus 132, 65 (2017)

    Article  Google Scholar 

  37. M. Barzegar Gerdroodbary, M. Rahimi Takami, H.R. Heidari, Keivan Fallah, D.D. Ganji, Acta Astronaut. 123, 283 (2016)

    Article  ADS  Google Scholar 

  38. M. Barzegar Gerdroodbary, Shock Waves 24, 537 (2014)

    Article  ADS  Google Scholar 

  39. M. Barzegar Gerdroodbary, Mohsen Sheikholeslami, S. Valiallah Mousavi, A. Anazadehsayed, Rasoul Moradi, Chem. Eng. Process. Process Intensif. 123, 58 (2018)

    Article  Google Scholar 

  40. Xiaoping Wen, Minggao Yu, Zhichao Liu, Wence Sun, J. Loss Prev. Process Ind. 25, 730 (2012)

    Article  Google Scholar 

  41. Hakon Wadell, J. Geol. 43, 250 (1935)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iman Shiryanpour or Norollah Kasiri.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiryanpour, I., Kasiri, N. Effects of sphericity coefficient and fuel type on flame propagation inside an obstructed chamber. Eur. Phys. J. Plus 134, 240 (2019). https://doi.org/10.1140/epjp/i2019-12605-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12605-3

Navigation