Skip to main content
Log in

Cosmological study of autonomous dynamical systems in modified Tele-Parallel gravity

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Cosmological approaches of an autonomous dynamical system studied in the framework of f(T) gravity are investigated in this paper. Our methods applied to flat Friedmann-Robertson-Walker equations in f(T) gravity, consisting in extracting dynamical systems whose time-dependence is contained in a single parameter m depending on the Hubble rate of the Universe and its second derivative order. In our attempt to investigate the autonomous aspect of the dynamical systems reconstructed in both vacuum and non-vacuum f (T) gravities, two constant values of the parameter m have been at the heart of our present analysis. In the so-called quasi-de Sitter inflationary era (\( m\simeq 0\)), the corresponding autonomous dynamical systems provide stable de Sitter attractors and unstable de Sitter fixed points. Especially in vacuum f(T) gravity, the approximate form of the f(T) gravities near the stable and the unstable de Sitter fixed points has been performed. The matter dominated era case \( (m=-\frac{9}{2})\) leads to unstable fixed points confirming matter dominated era or not, and stable attractor fixed point describing dark energy dominated era. Another subtlety around the stable fixed point obtained at the matter dominated case in the non-vacuum f(T) gravity is that when the dark energy dominated era is reached, at the same time, the radiation perfect fluid dominated succumbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  2. K. Sato, Mon. Not. R. Astron. Soc. 195, 467 (1981)

    Article  ADS  Google Scholar 

  3. A.H. Guth, Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  4. A.D. Linde, Phys. Lett. B 108, 389 (1982)

    Article  ADS  Google Scholar 

  5. A. Albrecht, P.J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982)

    Article  ADS  Google Scholar 

  6. D.N. Spergel et al., Astrophys. J. Suppl. 170, 377 (2007) arXiv:astro-ph/0603449

    Article  ADS  Google Scholar 

  7. Supernova Cosmology Project Collaboration (S. Perlmutter et al.), Astrophys. J. 517, 565 (1999) astro-ph/9812133

    Article  Google Scholar 

  8. Supernova Search Team Collaboration (A.G. Riess et al.), Astron. J. 116, 1009 (1998) astro-ph/9805201

    Article  Google Scholar 

  9. SDSS Collaboration (M. Tegmark et al.), Phys. Rev. D 69, 103501 (2004) astro-ph/0310723

    Article  Google Scholar 

  10. SDSS Collaboration (U. Seljak et al.), Phys. Rev. D 71, 103515 (2005) astro-ph/0407372

    Article  ADS  Google Scholar 

  11. SDSS Collaboration (D.J. Eisenstein et al.), Astrophys. J. 633, 560 (2005) astro-ph/0501171

    Article  Google Scholar 

  12. B. Jain, A. Taylor, Phys. Rev. Lett. 91, 141302 (2003) astro-ph/0306046

    Article  ADS  Google Scholar 

  13. J.K. Adelman-McCarthy et al., Astrophys. J. Suppl. 175, 297 (2008) arXiv:0707.3413 [astro-ph]

    Article  ADS  Google Scholar 

  14. R. Aldrovandi, J.G. Pereira, An Introduction to Teleparallel Gravity, https://doi.org/www.ift.unesp.br/users/jpereira/tele.pdf

  15. K. Kleidis, V.K. Oikonomou, Int. Geom. Methods Mod. Phys. 15, 1850137 (2018) arXiv:1803.10748 [gr-qc]

    Article  MathSciNet  Google Scholar 

  16. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010) arXiv:1002.4928 [gr-qc]

    Article  ADS  Google Scholar 

  17. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012) arXiv:1205.3421 [gr-qc]

    Article  ADS  Google Scholar 

  18. S. Nojiri, S.D. Odintsov, ECONF C 0602061, 06 (2006)

    Google Scholar 

  19. S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007) arXiv:hep-th/0601213

    Article  MathSciNet  Google Scholar 

  20. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. F.G. Alvarenga, M.J.S. Houndjo, A.V. Monwanou, Jean. B. Chabi-Orou, arXiv:1205.4678 [gr-qc]

  22. S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005) hep-th/0508049

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Nojiri, S.D. Odintsov, A. Toporensky, P. Tretyakov, arXiv:0912.2488

  24. M.J.S. Houndjo, M.E. Rodrigues, D. Momeni, R. Myrzakulov, arXiv:1301.4642 [gr-qc]

  25. E. Novikov, Mod. Phys. Lett. A 31, 1650092 (2016)

    Article  ADS  Google Scholar 

  26. E. Novikov, Electron. J. Theor. Phys. 13, 79 (2016)

    Google Scholar 

  27. E. Novikov, Am. Res. J. Phys. 4, 1 (2018)

    Google Scholar 

  28. F. Hehl, P. Von Der Heyde, G. Kerclok, J. Nester, Rev. Mod. Phys. 48, 393 (1976)

    Article  ADS  Google Scholar 

  29. J. Amorós, J. de Haro, S.D. Odintsov, Phys. Rev. D 87, 104037 (2013) arXiv:1305.2344 [gr-qc]

    Article  ADS  Google Scholar 

  30. K. Bamba, J. de Haro, S.D. Odintsov, JCAP 1302, 008 (2013) arXiv:1211.2968 [gr-qc]

    Article  ADS  Google Scholar 

  31. K. Bamba, S. ’i. Nojiri, S.D. Odintsov, arXiv:1304.6191 [gr-qc]

  32. G.R. Bengochea, R. Ferraro, Phys. Rev. D 79, 124019 (2009) arXiv:0812.1205 [astro-ph]

    Article  ADS  Google Scholar 

  33. E.V. Linder, Phys. Rev. D 81, 127301 (2010) 82

    Article  ADS  Google Scholar 

  34. M.E. Rodrigues, I.G. Salako, M.J.S. Houndjo, J. Tossa, Int. J. Mod. Phys. D 23, 1450004 (2014)

    Article  ADS  Google Scholar 

  35. Yi-Fu Cai, Salvatore Capozziello, Mariafelicia De Laurentis, Emmanuel N. Saridakis, arXiv:1511.07586v2 [gr-qc]

  36. Manuel Hohmann, Laur Järv, Ulbossyn Ualikhanova, arXiv:1801.05786v2 [gr-qc]

  37. Rafael C. Nunes, arXiv:1802.02281v2 [gr-qc]

  38. Rafael C. Nunes, Supriya Pan, Emmanuel N. Saridakis, arXiv:1606.04359v2 [gr-qc]

  39. M.M. Ivanov, A.V. Toporensky, Gravit. Cosmol. 18, 43 (2012) arXiv:1106.5179 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  40. S. Rippl, H. van Elst, R.K. Tavakol, D. Taylor, Gen. Relativ. Gravit. 28, 193 (1996) gr-qc/9511010

    Article  ADS  Google Scholar 

  41. M. Khurshudyan, Int. J. Geom. Methods Mod. Phys. 14, 1750041 (2016)

    Article  MathSciNet  Google Scholar 

  42. R.D. Boko, M.J.S. Houndjo, J. Tossa, Int. J. Mod. Phys. D 25, 1650098 (2016) arXiv:1605.03404 [gr-qc]

    Article  ADS  Google Scholar 

  43. K. Kleidis, V.K. Oikonomou, arXiv:1808.04674 [gr-qc]

  44. S.D. Odintsov, V.K. Oikonomou, A.V. Timoshkin, E.N. Saridakis, R. Myrzakulov, arXiv:1810.01276 [gr-qc]

  45. S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 98, 024013 (2018) arXiv:1806.07295 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  46. S.D. Odintsov, V.K. Oikonomou, arXiv:1806.01588.01276 [gr-qc]

  47. S.D. Odintsov, V.K. Oikonomou, arXiv:1711.02230v1 [gr-qc]

  48. K. Bamba, Davood Momeni, Mudhahir Al Ajmi, arXiv:1711.10475v1

  49. Mubasher Jamil, Kuralay Yesmakhanova, Davood Momeni, Ratbay Myrzakulov, Cent. Eur. J. Phys. 10, 1065 (2012)

    Google Scholar 

  50. K. Bamba, S. Nojiri, S.D. Odintsov, arXiv:1401.7378v2

  51. Manuel Hohmann, Laur Järv, Ulbossyn Ualikhanova, arXiv:1706.02376v2 [gr-qc]

  52. K. Hayashi, T. Shirafuji, Phys. Rev. D 19, 3524 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  53. Di Liu, M.J. Rebouças, arXiv:1207.1503

  54. Yi-Fu Cai, Shih-Hung Chen, James B. Dent, Sourish Dutta, Emmanuel N. Saridakis, arXiv:1104.4349v2 [astro-ph.CO]

  55. Yi-Fu Cai, Chunlong Li, Emmanuel N. Saridakis, LingQin Xue, arXiv:1801.05827v1 [gr-qc]

  56. B. Li, T.P. Sotiriou, J.D. Barrow, Phys. Rev. D 83, 064035 (2011)

    Article  ADS  Google Scholar 

  57. L.L. So, J.M. Nestr, arXiv:gr-qc/0612062

  58. S.C. Ulhoa, E.P. Spaniol, arXiv:1303.144

  59. Artur Alho, Sante Carloni, Claes Uggla, arXiv:1607.05715v2 [gr-qc]

  60. Stephen Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, 2003)

  61. S.D. Odintsov, V.K. Oikonomou, Int. J. Mod. Phys. D 26, 1750085 (2017) arXiv:1512.04787 [gr-qc]

    Article  ADS  Google Scholar 

  62. L. Nottale, Found. Sci. 15, 101.152 (2008)

    MathSciNet  Google Scholar 

  63. M.H. Daouda, M.E. Rodrigues, M.J.S. Houndjo, Eur. Phys. J. C 72, 1893 (2012)

    Article  ADS  Google Scholar 

  64. K. Karami, A. Abdolmaleki, arXiv:1202.2278

  65. Mubasher Jamil, Davood Momeni, Ratbay Myrzakulov, arXiv:1309.3269v3 [gr-qc]

  66. M. Jamil, D. Momeni, R. Myrzakulov, Eur. Phys. J. C 72, 1959 (2012)

    Article  ADS  Google Scholar 

  67. S. Nesseris, S. Basilakos, E.N. Saridakis, L. Perivolaropoulos, arXiv:1308.6142v3 [astro-ph.CO]

  68. W. El Hanafy, G.G.L. Nashed, arXiv:1410.2467v3 [hep-th]

  69. S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 92, 124024 (2015) arXiv:1510.04333 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Ganiou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganiou, M.G., Logbo, P.H., Houndjo, M.J.S. et al. Cosmological study of autonomous dynamical systems in modified Tele-Parallel gravity. Eur. Phys. J. Plus 134, 45 (2019). https://doi.org/10.1140/epjp/i2019-12393-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12393-8

Navigation