Skip to main content

Advertisement

Log in

Thermodynamic and thermoeconomic optimization of coupled thermal and chemical engines by means of an equivalent array of uncoupled endoreversible engines

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In 1994, De Mey and De Vos (MV) proposed an analysis of an array of two endoreversible heat engines connected by a thermal bridge. Their objective was to show that the well-known Curzon-Ahlborn (CA) efficiency, \(\eta_{CA} = 1-(T_{2}/T_{1})^{1/2}\), is not a universal value for endoreversible engines with a Newtonian heat transfer law. MV found that the efficiency of such an array performing at maximum power is given by \(\eta_{MV}=1-(T_{2}/T_{1})^{1/3}\). However, we show that the CA formula also is present in the MV array when it performs at maximum efficiency. In the present work we made both thermodynamic and thermoeconomic analyses of the MV model and we show an equivalent array formed by three uncoupled endoreversible engines operating simultaneously between the same thermal reservoirs. We extend all the previous analyses to the case of a chemical MV-type array. In all cases three objective functions were used: maximum power, maximum ecological function and maximum efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)

    Article  ADS  Google Scholar 

  2. B. Andresen, P. Salamon, R.S. Berry, Phys. Today 37, 62 (1984)

    Article  Google Scholar 

  3. A. Bejan, J. Appl. Phys. 79, 1191 (1996)

    Article  ADS  Google Scholar 

  4. S. Sieniutycz, P. Salamon, Finite Time Thermodynamics and Thermoeconomics (Taylor and Francis, New York, 1990)

  5. A. De Vos, Endoreversible Thermodynamics of Solar Energy Conversion (Oxford University Press, Oxford, 1992)

  6. K.H. Hoffmann, J.M. Burzler, S. Schubert, J. Non-Equilib. Thermodyn. 22, 311 (1997)

    Google Scholar 

  7. A. Durmayaz, O.S. Sogut, B. Sahin, H. Yavuz, Prog. Energy Combust. Sci. 30, 175 (2004)

    Article  Google Scholar 

  8. B. Andresen, Angew. Chem. 50, 2690 (2011)

    Article  Google Scholar 

  9. F. Angulo-Brown, L.A. Arias-Hernández, M. Santillán, Rev. Mex. Fis. 48, 182 (2002)

    Google Scholar 

  10. L. Chen, F. Sun, Advances in Finite Time Thermodynamics, Analysis and Optimization (Nova Science Publishers, New York, 2004)

  11. S.J. Xia, L. Chen, Y. Ge, F.R. Sun, Int. J. Low-Carbon Technol. 11, 349 (2016)

    Article  Google Scholar 

  12. Z. Wu, L. Chen, Y. Ge, F.R. Sun, Eur. Phys. J. Plus 132, 203 (2017)

    Article  Google Scholar 

  13. Y. Ge, L. Chen, X. Qin, Z. Xie, Eur. Phys. J. Plus 132, 209 (2017)

    Article  ADS  Google Scholar 

  14. I. Prigogine, Thermodynamics of Irreversible Processes (John Wiley & Sons, New York, 1961)

  15. S.R. De Groot, P. Mazur, Nonequilibrium Thermodynamics (Dover, New York, 1984)

  16. D. Xia, L. Chen, F.R. Sun, Int. J. Energy Environ. 2, 909 (2011)

    Google Scholar 

  17. S. Ozcaynak, S. Goktan, H. Yavuz, J. Phys. D 27, 1139 (1994)

    Article  ADS  Google Scholar 

  18. J. Chen, J. Phys. D 27, 1144 (1994)

    Article  ADS  Google Scholar 

  19. A. De Vos, Energy Convers. Manag. 36, 1 (1995)

    Article  Google Scholar 

  20. B. Sahin, A. Kodal, Energy Convers. Manag. 42, 1085 (2001)

    Article  Google Scholar 

  21. L. Chen, F. Sun, Z. Wu, Appl. Energy 81, 388 (2005)

    Article  ADS  Google Scholar 

  22. M.A. Barranco-Jiménez, F. Angulo-Brown, J. Energy Inst. 80, 96 (2007)

    Article  Google Scholar 

  23. M.A. Barranco-Jiménez, F. Angulo-Brown, J. Energy Inst. 80, 232 (2007)

    Article  Google Scholar 

  24. M.A. Barranco-Jiménez, Rev. Mex. Fis. 55, 211 (2009)

    Google Scholar 

  25. M.H. Ahmadi, H. Sayyaadi, A.H. Mohammadi, M.A. Barranco-Jiménez, Energy Convers. Manag. 73, 370 (2013)

    Article  Google Scholar 

  26. M.H. Ahmadi, M. Mehrpooya, Energy Convers. Manag. 103, 616 (2015)

    Article  Google Scholar 

  27. G. Tsasaronis, Prog. Energy Combust. Sci. 19, 227 (1993)

    Article  Google Scholar 

  28. A. Bejan, G. Tsatsatonis, M. Moran, Thermal Design and Optimization (John Wiley & Sons, Inc., New York, 1996)

  29. D. Flórez-Orrego, S. Oliveira Junior, Energy 141, 2540 (2017)

    Article  Google Scholar 

  30. X. Chen, X. Hao, Entropy 17, 2328 (2015)

    Article  ADS  Google Scholar 

  31. C. Van Den Broeck, Phys. Rev. Lett. 95, 190602 (2005)

    Article  ADS  Google Scholar 

  32. B. Jiménez de Cisneros, L.A. Arias-Hernández, A. Calvo-Hernández, Phys. Rev. E 73, 057103 (2006)

    Article  ADS  Google Scholar 

  33. Z.C. Tu, J. Phys. A 41, 312003 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. T. Schmiedl, U. Seifert, EPL 81, 20003 (2008)

    Article  ADS  Google Scholar 

  35. A. De Vos, Am. J. Phys. 53, 570 (1985)

    Article  ADS  Google Scholar 

  36. D. Gutkowicz-Krusin, I. Procaccia, J. Ross, J. Chem. Phys. 69, 3898 (1978)

    Article  ADS  Google Scholar 

  37. F. Angulo-Brown, R. Páez-Hernández, J. Appl. Phys. 74, 1191 (1993)

    Article  Google Scholar 

  38. G. De Mey, A. De Vos, J. Phys. D 27, 736 (1994)

    Article  ADS  Google Scholar 

  39. J.A. Rocha-Martínez, T.D. Navarrate-González, F. Angulo-Brown, Rev. Mex. Fis. 42, 588 (1996)

    Google Scholar 

  40. F. Angulo-Brown, J. Appl. Phys. 69, 7465 (1991)

    Article  ADS  Google Scholar 

  41. L.A. Arias-Hernández, F. Angulo-Brown, Rev. Mex. Fis. 40, 866 (1994)

    Google Scholar 

  42. J.C. Pacheco-Paez, F. Angulo-Brown, M.A. Barranco-Jiménez, Entropy 19, 1 (2017)

    Article  MathSciNet  Google Scholar 

  43. A. Ocampo-García, M.A. Barranco-Jiménez, F. Angulo-Brown, Physica A 488, 149 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  44. D.C. Agrawal, Eur. J. Phys. 30, 1173 (2009)

    Article  Google Scholar 

  45. J.M. Gordon, V.N. Orlov, J. Appl. Phys. 74, 5303 (1993)

    Article  ADS  Google Scholar 

  46. F. Angulo-Brown, M. Santillán, E. Calleja-Quevedo, Nuovo Cimento D 17, 87 (1995)

    Article  ADS  Google Scholar 

  47. D. Xia, L. Chen, F.R. Sun, Math. Comput. Model. 51, 127 (2010)

    Article  Google Scholar 

  48. M.A. Barranco, A. Ocampo, J.C. Pacheco, F. Angulo, J. Phys.: Conf. Ser. 792, 1 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Barranco-Jiménez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ocampo-García, A., Barranco-Jiménez, M.A. & Angulo-Brown, F. Thermodynamic and thermoeconomic optimization of coupled thermal and chemical engines by means of an equivalent array of uncoupled endoreversible engines. Eur. Phys. J. Plus 133, 342 (2018). https://doi.org/10.1140/epjp/i2018-12158-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12158-y

Navigation