Skip to main content
Log in

A thermostatted kinetic theory model for event-driven pedestrian dynamics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This paper is devoted to the modeling of the pedestrian dynamics by means of the thermostatted kinetic theory. Specifically the microscopic interactions among pedestrians and an external force field are modeled for simulating the evacuation of pedestrians from a metro station. The fundamentals of the stochastic game theory and the thermostatted kinetic theory are coupled for the derivation of a specific mathematical model which depicts the time evolution of the distribution of pedestrians at different exits of a metro station. The perturbation theory is employed in order to establish the stability analysis of the nonequilibrium stationary states in the case of a metro station consisting of two exits. A general sensitivity analysis on the initial conditions, the magnitude of the external force field and the number of exits is presented by means of numerical simulations which, in particular, show how the asymptotic distribution and the convergence time are affected by the presence of an external force field. The results show how, in evacuation conditions, the interaction dynamics among pedestrians can be negligible with respect to the external force. The important role of the thermostat term in allowing the reaching of the nonequilibrium stationary state is stressed out. Research perspectives are underlined at the end of paper, in particular for what concerns the derivation of frameworks that take into account the definition of local external actions and the introduction of the space and velocity dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Holland, J. Syst. Sci. Complex. 19, 1 (2006)

    Article  MathSciNet  Google Scholar 

  2. M. Fukui, Y. Ishibashi, J. Phys. Soc. Jpn. 68, 2861 (1999)

    Article  ADS  Google Scholar 

  3. V.J. Blue, J.L. Adler, Transp. Res. Rec.: J. Transp. Res. Board 1678, 135 (2000)

    Article  Google Scholar 

  4. X. Zheng, Y. Cheng, Comput. Math. Appl. 62, 4627 (2011)

    Article  MathSciNet  Google Scholar 

  5. M. Chraibi, A. Seyfried, A. Schadschneider, Phys. Rev. E 82, 046111 (2010)

    Article  ADS  Google Scholar 

  6. M. Moussad, D. Helbing, G. Theraulaz, Proc. Natl. Acad. Sci. 108, 6884 (2011)

    Article  ADS  Google Scholar 

  7. F. Dietrich, G. Kster, Phys. Rev. E 89, 062801 (2014)

    Article  ADS  Google Scholar 

  8. D. Helbing, T. Vicsek, New J. Phys. 1, 13 (1999)

    Article  ADS  Google Scholar 

  9. C. Daganzo, Transp. Res. B 29B, 277 (1995)

    Article  Google Scholar 

  10. Z. Zhao, J. Yan, D. Liang, S. Ye, Proc. Eng. 71, 81 (2014)

    Article  Google Scholar 

  11. J. Shaha, G.J. Joshib, P. Paridac, Proc. Soc. Behav. Sci. 104, 688 (2013)

    Article  Google Scholar 

  12. J. Zhou, H. Chen, J. Yang, J. Yan, Math. Probl. Eng. 2014, 843096 (2014)

    Google Scholar 

  13. D. Helbing, I. Farkas, P. Molnar, T. Vicsek, Simulating of pedestrian crowds in normal and evacuation situations, in Pedestrian and Evacuation Dynamics, edited by M. Schreckenberg, S.D. Sharma (Springer Verlag, Berlin and Heidelberg, 2001) pp. 21--58

  14. F. Li, S. Chen, X. Wang, F. Feng, Proc. Soc. Behav. Sci. 138, 314 (2014)

    Article  Google Scholar 

  15. N. Shiwakoti, M. Sarvi, G. Rose, Modelling pedestrian behaviour under emergency conditions: State-of-the- art and future directions, Vol. 31, 31st Australasian Transport Research Forum (ATRF), Gold Coast (Victoria, Department of Transport, 2008) pp. 457--473

  16. U. Weidmann, U. Kirsch, M. Schreckenberg (Editors), Pedestrian and Evacuation Dynamics, Vol. 2012 (Springer International Publishing, Switzerland, 2014)

  17. C. Bianca, C. Mogno, Commun. Nonlinear Sci. Numer. Simul. 54, 221 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. G.P. Morris, C.P. Dettmann, Chaos 8, 321 (1998)

    Article  ADS  Google Scholar 

  19. D.J. Evans, G.P. Morris, Statistical Mechanics of Nonequilibrium Liquids (Academic Press, New York, 1990)

  20. O.G. Jepps, L. Rondoni, J. Phys. A 43, 133001 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. C. Bianca, J. Riposo, Eur. Phys. J. Plus 130, 159 (2015)

    Article  Google Scholar 

  22. C. Bianca, L. Brézin, Int. J. Biomath. 10, 1750072 (2017)

    Article  MathSciNet  Google Scholar 

  23. R.B. Myerson, Game Theory: Analysis of Conict (Harvard University Press, Cambridge, 1997)

  24. C. Bianca, C. Mogno, Math. Comput. Model. Dyn. Syst. 24, 207 (2018)

    Article  MathSciNet  Google Scholar 

  25. C. Dogbe, J. Math. Anal. Appl. 387, 512 (2012)

    Article  MathSciNet  Google Scholar 

  26. R.L. Hughes, Annu. Rev. Fluid. Mech. 35, 169 (2003)

    Article  ADS  Google Scholar 

  27. A. Helbing, A. Johansson, H.Z. Al-Abideen, Phys. Rev. E 75, 046109 (2007)

    Article  ADS  Google Scholar 

  28. C. Dogbe, Appl. Math. Inf. Sci. 7, 29 (2013)

    Article  MathSciNet  Google Scholar 

  29. C. Dogbe, Comput. Math. Appl. 56, 1884 (2008)

    Article  MathSciNet  Google Scholar 

  30. R.M. Colombo, P. Goatin, M.D. Rosini, Gakuto Int. Ser. Math. Sci. Appl. 32, 255 (2010)

    Google Scholar 

  31. C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)

    Article  ADS  Google Scholar 

  32. Y.-Q. Jiang, P. Zhang, S.C. Wong, R.-X. Liu, Physica A 389, 4623 (2010)

    Article  ADS  Google Scholar 

  33. K. Rio, W.H. Warren, A Data-Driven Model of Pedestrian following and Emergent Crowd Behaviour (Department of Cognitive, Linguistic, and Psychological Sciences Brown University Providence, RI, USA, 2012)

  34. J.R. Dormand, P.J. Prince, J. Comput. Appl. Math. 6, 19 (1980)

    Article  MathSciNet  Google Scholar 

  35. L.F. Shampine, M.W. Reichelt, SIAM J. Sci. Comput. 18, 1 (1997)

    Article  MathSciNet  Google Scholar 

  36. C. Bianca, Math. Comput. Model. 51, 72 (2010)

    Article  MathSciNet  Google Scholar 

  37. A. Bellouquid, C. Bianca, Math. Comput. Model. 52, 802 (2010)

    Article  Google Scholar 

  38. P. Degond, B. Wennberg, Commun. Math. Sci. 5, 355 (2007)

    Article  MathSciNet  Google Scholar 

  39. C. Cercignani, The Boltzmann Equation and Its Applications (Springer, New York, 1988)

  40. A. Mellet, Kinet. Relat. Models 4, 873 (2011)

    Article  MathSciNet  Google Scholar 

  41. C. Bianca, C. Dogbe, Nonlinearity 27, 2771 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  42. C. Bianca, C. Dogbe, A. Lemarchand, Acta Appl. Math. 189, 1 (2015)

    Article  Google Scholar 

  43. C. Bianca, C. Dogbe, A. Lemarchand, Eur. Phys. J. Plus 131, 41 (2016)

    Article  Google Scholar 

  44. H.J.P. Timmermans, Pedestrian Behavior: Models, Data Collection and Applications (Emerald Group Publishing Ltd., England, 2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Bianca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianca, C., Mogno, C. A thermostatted kinetic theory model for event-driven pedestrian dynamics. Eur. Phys. J. Plus 133, 213 (2018). https://doi.org/10.1140/epjp/i2018-12055-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12055-5

Navigation