Skip to main content
Log in

Electrodynamics and spacetime geometry: Astrophysical applications

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

After a brief review of the foundations of (pre-metric) electromagnetism, we explore some physical consequences of electrodynamics in curved spacetime. In general, new electromagnetic couplings and related phenomena are induced by the spacetime curvature. The applications of astrophysical interest considered here correspond essentially to the following geometries: the Schwarzschild spacetime and the spacetime around a rotating spherical mass in the weak field and slow rotation regime. In the latter, we use the Parameterised Post-Newtonian (PPN) formalism. We also explore the hypothesis that the electric and magnetic properties of vacuum reflect the spacetime isometries. Therefore, the permittivity and permeability tensors should not be considered homogeneous and isotropic a priori. For spherical geometries we consider the effect of relaxing the homogeneity assumption in the constitutive relations between the fields and excitations. This affects the generalized Gauss and Maxwell-Ampère laws, where the electric permittivity and magnetic permeability in vacuum depend on the radial coordinate in accordance with the local isometries of space. For the axially symmetric geometries we relax both the assumptions of homogeneity and isotropy. We explore simple solutions and discuss the physical implications related to different phenomena, such as the decay of electromagnetic fields in the presence of gravity, magnetic terms in Gauss law due to the gravitomagnetism of the spacetime around rotating objects, a frame-dragging effect on electric fields and the possibility of a spatial (radial) variability of the velocity of light in vacuum around spherical astrophysical objects for strong gravitational fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hubert F.M. Goenner, Living Rev. Relativ. 7, 2 (2004)

    Article  ADS  Google Scholar 

  2. M. Blagojevic, F.W. Hehl, Gauge Theories of Gravitation, arXiv:1210.3775 [gr-qc]

  3. F.W. Hehl, Y.N. Obukhov, Foundations of Classical Electrodynamics: Charge, Flux, and Metric (Birkhuser, Boston, 2003)

  4. F. Gronwald, F.W. Hehl, J. Nitsch, Axiomatics of classical electrodynamics and its relation to gauge field theory, physics/0506219

  5. F.W. Hehl, Y.N. Obukhov, A gentle introduction to the foundations of classical electrodynamics: The meaning of the excitations (D,H) and the field strengths (E,B), physics/0005084

  6. F.W. Hehl, Y.N. Obukhov, Lect. Notes Phys. 702, 163 (2006) gr-qc/0508024

    Article  Google Scholar 

  7. F.W. Hehl, Y.N. Obukhov, Lect. Notes Phys. 562, 479 (2001) gr-qc/0001010

    Article  ADS  Google Scholar 

  8. W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936)

    Article  ADS  Google Scholar 

  9. B. Mashhoon, Nonlocal electrodynamics, in Cosmology and Gravitation, Proc. VII Brasilian School of Cosmology and Gravitation, Rio de Janeiro, August 1993, edited by M. Novello (Editions Frontieres, Gif-sur-Yvette, 1994) pp. 245--295

  10. F. Cabral, F.S.N. Lobo, Found. Phys. 47, 208 (2017) arXiv:1602.01492 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  11. F. Cabral, F.S.N. Lobo, Eur. Phys. J. C 77, 237 (2017) arXiv:1603.08157 [gr-qc]

    Article  ADS  Google Scholar 

  12. M.P. Hobson, G.P. Efstathiou, A.N. Lasenby, General Relativity: An Introduction for Physicists (Cambridge University Press, 2006)

  13. James B. Hartle, Gravity. An Introduction to Einstein's General Relativity (Pearson Addison Wesley, 2003)

  14. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Elsevier, 1975)

  15. B.F. Schutz, A first course on general relativity (Cambridge University Press, 2003)

  16. C.M. Will, Theoretical frameworks for testing relativistic gravity: The parametrized post-Newtonian formalism, Dissertation (PhD), California Institute of Technology (1971)

  17. C.M. Will, K. Nordtvedt jr., Astrophys. J. 177, 757 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  18. K.S. Thorne, C.M. Will, W.T. Ni, Theoretical Frameworks For Testing Relativistic Gravity: A Review, OAP-247

  19. W.T. Ni, Astrophys. J. 176, 769 (1972)

    Article  ADS  Google Scholar 

  20. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W.H. Freeman & Co., San Francisco, 1973)

  21. C.M. Will, Theory And Experiment In Gravitational Physics (Cambridge University Press, 1981)

  22. C.M. Will, Living Rev. Relativ. 9, 3 (2006) gr-qc/0510072

    Article  ADS  Google Scholar 

  23. G. Brodin, M. Marklund, P.K.S. Dunsby, Phys. Rev. D 62, 104008 (2000) gr-qc/0006030

    Article  ADS  Google Scholar 

  24. C. Chicone, B. Mashhoon, Phys. Rev. D 83, 064013 (2011) arXiv:1005.1420 [gr-qc]

    Article  ADS  Google Scholar 

  25. A. Merloni, M. Vietri, L. Stella, D. Bini, Mon. Not. R. Astron. Soc. 304, 155 (1999) astro-ph/9811198

    Article  ADS  Google Scholar 

  26. E. Barausse, V. Cardoso, P. Pani, Phys. Rev. D 89, 104059 (2014) arXiv:1404.7149 [gr-qc]

    Article  ADS  Google Scholar 

  27. B.W. Carrol, D.A. Ostlie, An Introduction to Modern Astrophysics (Addison-Wesley, 1996)

  28. L. Rezzolla, B.J. Ahmedov, J.C. Miller, Mon. Not. R. Astron. Soc. 322, 723 (2001) astro-ph/0011316

    Article  ADS  Google Scholar 

  29. D. Bini, C. Germani, R.T. Jantzen, Int. J. Mod. Phys. D 10, 633 (2001) gr-qc/0012068

    Article  ADS  Google Scholar 

  30. M. Visser, The Kerr Spacetime: A Brief Introduction, arXiv:0706.0622 [gr-qc]

  31. B. Mashhoon, Gravitoelectromagnetism: A Brief Review, gr-qc/0311030

  32. C.W.F. Everitt et al., Phys. Rev. Lett. 106, 221101 (2011) arXiv:1105.3456 [gr-qc]

    Article  ADS  Google Scholar 

  33. J. Bik, V. Karas, T. Ledvinka, IAU Symp. 238, 139 (2007) astro-ph/0610841

    ADS  Google Scholar 

  34. V. Karas, O. Kopacek, D. Kunneriath, Class. Quantum Grav. 29, 035010 (2012) arXiv:1201.0009 [astro-ph.HE]

    Article  ADS  Google Scholar 

  35. M. Marklund, G. Brodin, P.K.S. Dunsby, Astrophys. J. 536, 875 (2000) astro-ph/9907350

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Cabral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabral, F., Lobo, F.S.N. Electrodynamics and spacetime geometry: Astrophysical applications. Eur. Phys. J. Plus 132, 304 (2017). https://doi.org/10.1140/epjp/i2017-11618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11618-2

Navigation