Skip to main content
Log in

Bohr Hamiltonian for \(\gamma = 0^{\circ}\) with Davidson potential

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

A \(\gamma\)-rigid solution of the Bohr Hamiltonian is derived for \(\gamma=0^{\circ}\) utilizing the Davidson potential in the \(\beta\) variable. This solution is going to be called X(3)-D. The energy eigenvalues and wave functions are obtained by using an analytic method which has been developed by Nikiforov and Uvarov. B(E2) transition rates are calculated. A variational procedure is applied to energy ratios to determine whether or not the X(3) model is located at the critical point between spherical and deformed nuclei. The agreement with the experiment is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Iachello, Phys. Rev. Lett. 85, 3580 (2000)

    Article  ADS  Google Scholar 

  2. F. Iachello, Phys. Rev. Lett. 87, 052502 (2001)

    Article  ADS  Google Scholar 

  3. A. Bohr, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 26, No. 14 (1952)

    Google Scholar 

  4. I. Boztosun, D. Bonatsos, I. Inci, Phys. Rev. C 77, 044302 (2008)

    Article  ADS  Google Scholar 

  5. L. Fortunato, S. De Baerdemacker, K. Heyde, Phys. Rev. C 74, 014310 (2006)

    Article  ADS  Google Scholar 

  6. L. Fortunato, A. Vitturi, J. Phys. G Nucl. Part. Phys. 30, 627 (2004)

    Article  ADS  Google Scholar 

  7. D. Bonatsos, P.E. Georgoudis, N. Minkov, Phys. Rev. C 88, 034316 (2013)

    Article  ADS  Google Scholar 

  8. L. Naderi, H. Hassanabadi, Eur. Phys. J. Plus 131, 5 (2016)

    Article  Google Scholar 

  9. M. Chabab, A. El Batoul, A. Lahbas, M. Oulne, Nucl. Phys. A 953, 158 (2016)

    Article  ADS  Google Scholar 

  10. H. Sobhani, H. Hassanabadi, Mod. Phys. Lett. A 31, 1650152 (2016)

    Article  ADS  Google Scholar 

  11. L. Fortunato, Eur. Phys. J. A 26, s01 1 (2005)

    ADS  Google Scholar 

  12. J. Meng, W. Zhang, S.G. Zhou, H. Toki, L.S. Geng, Eur. Phys. J. A 25, 23 (2005)

    Article  Google Scholar 

  13. Z.Q. Sheng, J.Y. Guo, Mod. Phys. Lett. A 20, 2711 (2005)

    Article  ADS  Google Scholar 

  14. T. Niksic, D. Vretenar, G.A. Lalazissis, Phys. Rev. Lett. 99, 092502 (2007)

    Article  ADS  Google Scholar 

  15. Z.P. Li, T. Niksic, D. Vretenar, Phys. Rev. C 80, 061301 (2009)

    Article  ADS  Google Scholar 

  16. D. Bonatsos, D. Lenis, N. Minkov, P.P. Raychev, P.A. Terziev, Phys. Rev. C 69, 014302 (2004)

    Article  ADS  Google Scholar 

  17. D. Bonatsos, D. Lenis, N. Minkov, P.P. Raychev, P.A. Terziev, Phys. Rev. C 69, 044316 (2004)

    Article  ADS  Google Scholar 

  18. P.M. Davidson, Proc. R. Soc. London, Ser. A 135, 459 (1932)

    Article  ADS  Google Scholar 

  19. D. Bonatsos, D. Lenis, N. Minkov, D. Petrellis, P.P. Raychev, P.A. Terziev, Phys. Lett. B 584, 40 (2004)

    Article  ADS  Google Scholar 

  20. A.S. Davydov, A.A. Chaban, Nucl. Phys. 20, 499 (1960)

    Article  Google Scholar 

  21. D. Bonatsos, D. Lenis, D. Petrellis, P.A. Terziev, I. Yigitoglu, Phys. Lett. B 632, 238 (2006)

    Article  ADS  Google Scholar 

  22. M. Alimohammadi, H. Hassanabadi, Nucl. Phys. A 957, 439 (2017)

    Article  ADS  Google Scholar 

  23. M. Alimohammadi, H. Hassanabadi, S. Zare, Nucl. Phys. A 960, 78 (2017)

    Article  ADS  Google Scholar 

  24. M. Chabab, A. El Batoul, A. Lahbas, M. Oulne, Phys. Lett. B 758, 212 (2016)

    Article  ADS  Google Scholar 

  25. P. Buganu, R. Budaca, J. Phys. G: Nucl. Part. Phys. 42, 105106 (2015)

    Article  ADS  Google Scholar 

  26. R. Budaca, Phys. Lett. B 739, 56 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  27. R. Budaca, A.I. Budaca, J. Phys. G: Nucl. Part. Phys. 42, 085103 (2015)

    Article  ADS  Google Scholar 

  28. M. Chabab, A. El Batoul, A. Lahbas, M. Oulne, J. Phys. G: Nucl. Part. Phys. 43, 125107 (2016)

    Article  ADS  Google Scholar 

  29. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhaüser Basel, 1988)

  30. J.P. Elliott, J.A. Evans, P. Park, Phys. Lett. B 169, 309 (1986)

    Article  ADS  Google Scholar 

  31. D.J. Rowe, C. Bahri, J. Phys. A 31, 4947 (1998)

    Article  ADS  Google Scholar 

  32. W. Greiner, Quantum Mechanics -- An Introduction (Springer, Berlin 1989)

  33. P.E. Garrett, J. Phys. G: Nucl. Part. Phys. 27, R1 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Yigitoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yigitoglu, I., Gokbulut, M. Bohr Hamiltonian for \(\gamma = 0^{\circ}\) with Davidson potential. Eur. Phys. J. Plus 132, 345 (2017). https://doi.org/10.1140/epjp/i2017-11609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11609-3

Navigation