Skip to main content
Log in

Bianchi type-I and -III modified holographic Ricci Dark energy models in Saez-Ballester theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this work, we study the spatially homogeneous and anisotropic Bianchi type-III (B-III) and locally rotationally symmetric (LRS) Binachi type-I (B-I) models filled with matter and dark energy in the framework of the Saez-Ballester (1986) scalar-tensor theory of gravitation. Here, we consider the modified holographic Ricci dark energy as the viable candidate to dark energy. To obtain a deterministic solution we consider the time-varying deceleration parameter, which leads to the average scale factor \(a(t)=[\sinh(\alpha t)]^{\frac{1}{k}}\). This average scale factor describes a model which generates a smooth transition of the universe from the early decelerating phase to the recent accelerating phase. The physical and kinematical aspects of the models are discussed through figures and also found to be in good agreement with recent astrophysical observations under suitable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  2. C. Fedeli et al., Astron. Astrophys. 500, 667 (2009)

    Article  ADS  Google Scholar 

  3. R.R. Caldwell, M. Doran, Phys. Rev. D 69, 103517 (2004)

    Article  ADS  Google Scholar 

  4. T. Koivirto, D.F. Mota, Phys. Rev. D 73, 083502 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. V. Sahni, Lect. Notes Phys. 653, 141 (2004)

    Article  ADS  Google Scholar 

  6. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. L. Susskind, J. Math. Phys. 36, 6377 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  8. S.D.H. Hsu, Phys. Lett. B 594, 13 (2004)

    Article  ADS  Google Scholar 

  9. L.N. Granda, A. Oliveros, Phys. Lett. B 671, 199 (2009)

    Article  ADS  Google Scholar 

  10. S. Chen, J. Jing, Phys. Lett. B 679, 144 (2009)

    Article  ADS  Google Scholar 

  11. K. Das, T. Sultana, Astrophys. Space Sci. 360, 4 (2015)

    Article  ADS  Google Scholar 

  12. M.V. Santhi et al., Prespacetime J. 7, 1379 (2016)

    Google Scholar 

  13. M.V. Santhi, Can. J. Phys. (2016) DOI:10.1139/cjp-2016-0628

  14. C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Saez, V. Ballester, J. Phys. Lett. A 113, 467 (1986)

    Article  ADS  Google Scholar 

  16. D.R.K. Reddy et al., Astrophys. Space Sci. 308, 185 (2006)

    ADS  Google Scholar 

  17. K.S. Adhav et al., Astrophys. Space Sci. 312, 165 (2007)

    Article  ADS  Google Scholar 

  18. S.K. Tripathy et al., Astrophys. Space Sci. 315, 105 (2008)

    Article  ADS  Google Scholar 

  19. V.U.M. Rao et al., Astrophys. Space Sci. 317, 27 (2008)

    Article  ADS  Google Scholar 

  20. V.U.M. Rao et al., Astrophys. Space Sci. 335, 635 (2011)

    Article  ADS  Google Scholar 

  21. R.L. Naidu et al., Int. J. Theor. Phys. 51, 2857 (2012)

    Article  Google Scholar 

  22. M. Jamil et al., Eur. Phys. J. C 72, 1998 (2012)

    Article  ADS  Google Scholar 

  23. V.U.M. Rao et al., Astrophys. Space Sci. 337, 499 (2012)

    Article  ADS  Google Scholar 

  24. A. Pradhan et al., Int. J. Theor. Phys. 52, 266 (2013)

    Article  Google Scholar 

  25. M. Kiran et al., Astrophys. Space Sci. 354, 577 (2014)

    Article  ADS  Google Scholar 

  26. V.U.M. Rao et al., Prespacetime J. 7, 293 (2016)

    Google Scholar 

  27. S. Sarkar, C.R. Mahanta, Int. J. Theor. Phys. 52, 1482 (2013)

    Article  Google Scholar 

  28. S. Sarkar, Astrophys. Space Sci. 349, 985 (2014)

    Article  ADS  Google Scholar 

  29. K.S. Adhav et al., Astrophys. Space Sci. 359, 24 (2015)

    Article  ADS  Google Scholar 

  30. M. Kiran et al., Astrophys. Space Sci. 356, 407 (2015)

    Article  ADS  Google Scholar 

  31. V.U.M. Rao, G. Suryanarayana, Prespacetime J. 7, 783 (2016)

    Google Scholar 

  32. D.R.K. Reddy et al., Prespacetime J. 7, 315 (2016a)

    Google Scholar 

  33. V.U.M. Rao, U.Y.D. Prasanthi, Afr. Rev. Phys. 11, 0001 (2016)

    Google Scholar 

  34. M.V. Santhi et al., Astrophys. Space Sci. 361, 142 (2016)

    Article  ADS  Google Scholar 

  35. M.V. Santhi et al., Can. J. Phys. 95, 578 (2016)

    Article  ADS  Google Scholar 

  36. R.K. Mishra et al., Int. J. Theor. Phys. 52, 2546 (2013)

    Article  Google Scholar 

  37. A. Pradhan, Indian J. Phys. 88, 215 (2014)

    Article  ADS  Google Scholar 

  38. D.R.K. Reddy, arXiv:1601.02648 (2016)

  39. R.K. Mishra et al., Int. J. Theor. Phys. 55, 1241 (2016)

    Article  Google Scholar 

  40. C.B. Collins et al., Gen. Relativ. Gravit. 12, 805 (1980)

    Article  ADS  Google Scholar 

  41. T. Chiba, T. Nakamura, Prog. Theor. Phys. 100, 1077 (1998)

    Article  ADS  Google Scholar 

  42. M. Visser, Class. Quantum Grav. 21, 2603 (2004)

    Article  ADS  Google Scholar 

  43. J.V. Cunha, J.A.S. Lima, Mon. Not. R. Astron. Soc. 390, 210 (2008)

    Article  ADS  Google Scholar 

  44. C. Cattoen, M. Visser, arXiv:gr-qc/0703122 (2007)

  45. J.V. Cunha, Phys. Rev. D 79, 047301 (2009)

    Article  ADS  Google Scholar 

  46. S. Capozziello et al., Phys. Rev. D 90, 044016 (2014)

    Article  ADS  Google Scholar 

  47. C. Cattoen, M. Visser, Phys. Rev. D 78, 063501 (2008)

    Article  ADS  Google Scholar 

  48. D.W. Hogg, arXiv:astro-ph/9905116 (2000)

  49. M. Betoule et al., Astron. Astrophys. 568, A22 (2014)

    Article  ADS  Google Scholar 

  50. P.A.R. Ade et al., Astron. Astrophys. 571, A16 (2014)

    Article  Google Scholar 

  51. O. Farooq, B. Ratra, Astrophys. J. Lett. 766, L7 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. U. M. Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, V.U.M., Divya Prasanthi, U.Y. Bianchi type-I and -III modified holographic Ricci Dark energy models in Saez-Ballester theory. Eur. Phys. J. Plus 132, 64 (2017). https://doi.org/10.1140/epjp/i2017-11328-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11328-9

Navigation