Skip to main content
Log in

Fragmentation functions of \(g \rightarrow \eta_{c}\)(1S0) and \(g \rightarrow J/\psi\)(3S1) considering the role of heavy quarkonium spin

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The production of heavy quarkonia is a powerful tool to test our understanding of strong interaction dynamics. It is well known that the dominant production mechanism for heavy quarkonia with large transverse momentum is fragmentation. In this work we, analytically, calculate the QCD leading-order contribution to the process-independent fragmentation functions (FFs) for a gluon to split into the vector (\( J/\psi\)) and pseudoscalar (\( \eta_{c}\)) S-wave charmonium states. The analyses of this paper differ in which we present, for the first time, an analytical form of the \(g\rightarrow J/\psi\) FF using a different approach (Suzuki’s model) in comparison with other results presented in the literature, where the Braaten scheme was used and the two-dimensional integrals were presented for the gluon FFs which must be evaluated numerically. The universal fragmentation probability for the \( g\rightarrow J/\psi\) is about \(10^{-6}\) which is in good consistency with the result obtained in the Braaten model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Brambilla, S. Eidelman, B.K. Heltsley, R. Vogt, G.T. Bodwin, E. Eichten, A.D. Frawley, A.B. Meyer et al., Eur. Phys. J. C 71, 1534 (2011) arXiv:1010.5827 [hep-ph]

    Article  ADS  Google Scholar 

  2. E. Braaten, T.C. Yuan, Phys. Rev. Lett. 71, 1673 (1993)

    Article  ADS  Google Scholar 

  3. G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 51, 1125 (1995) 55

    Article  ADS  Google Scholar 

  4. M. Soleymaninia, A.N. Khorramian, S.M. Moosavi Nejad, F. Arbabifar, Phys. Rev. D 88, 054019 (2013) 89

    Article  ADS  Google Scholar 

  5. E. Braaten, K.-m. Cheung, T.C. Yuan, Phys. Rev. D 48, 4230 (1993)

    Article  ADS  Google Scholar 

  6. C.-H. Chang, Y.-Q. Chen, Phys. Lett. B 284, 127 (1992)

    Article  ADS  Google Scholar 

  7. E. Braaten, K.m. Cheung, S. Fleming, T.C. Yuan, Phys. Rev. D 51, 4819 (1995) hep-ph/9409316

    Article  ADS  Google Scholar 

  8. E. Braaten, K.m. Cheung, T.C. Yuan, Phys. Rev. D 48, 5049 (1993) hep-ph/9305206

    Article  ADS  Google Scholar 

  9. M. Suzuki, Phys. Lett. B 71, 139 (1977)

    Article  ADS  Google Scholar 

  10. M. Suzuki, Phys. Rev. D 33, 676 (1986)

    Article  ADS  Google Scholar 

  11. CDF Collaboration (F. Abe et al.), Phys. Rev. Lett. 75, 1451 (1995) hep-ex/9503013

    Article  Google Scholar 

  12. J. Binnewies, B.A. Kniehl, G. Kramer, Phys. Rev. D 58, 034016 (1998) hep-ph/9802231

    Article  ADS  Google Scholar 

  13. S.M.M. Nejad, A. Armat, Eur. Phys. J. Plus 128, 121 (2013) arXiv:1307.6351 [hep-ph]

    Article  Google Scholar 

  14. D.P. Roy, K. Sridhar, Phys. Lett. B 339, 141 (1994) hep-ph/9406386

    Article  ADS  Google Scholar 

  15. A.F. Falk, M.E. Luke, M.J. Savage, M.B. Wise, Phys. Lett. B 312, 486 (1993) hep-ph/9305260

    Article  ADS  Google Scholar 

  16. W. Qi, C.F. Qiao, J.X. Wang, Phys. Rev. D 75, 074012 (2007) hep-ph/0701264

    Article  ADS  Google Scholar 

  17. J.P. Ma, Nucl. Phys. B 506, 329 (1997)

    Article  ADS  Google Scholar 

  18. Y.Q. Ma, J.W. Qiu, H. Zhang, Phys. Rev. D 89, 094029 (2014) arXiv:1311.7078 [hep-ph]

    Article  ADS  Google Scholar 

  19. G.T. Bodwin, U-R. Kim, J. Lee, JHEP 11, 020 (2012) arXiv:1208.5301 [hep-ph]

    Article  ADS  Google Scholar 

  20. S.J. Brodsky, C.-R. Ji, Phys. Rev. Lett. 55, 2257 (1985)

    Article  ADS  Google Scholar 

  21. G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)

    Article  ADS  Google Scholar 

  22. K. Kolodziej, A. Leike, R. Ruckl, Phys. Lett. B 348, 219 (1995) hep-ph/9412249

    Article  ADS  Google Scholar 

  23. M.A. Gomshi Nobary, J. Phys. G 20, 65 (1994)

    Article  ADS  Google Scholar 

  24. A.D. Adamov, G.R. Goldstein, Phys. Rev. D 56, 7381 (1997)

    Article  ADS  Google Scholar 

  25. F. Amiri, B.C. Harms, C.-R. Ji, Phys. Rev. D 32, 2982 (1985)

    Article  ADS  Google Scholar 

  26. B. Guberina, J.H. Kuhn, R.D. Peccei, R. Ruckl, Nucl. Phys. B 174, 317 (1980)

    Article  ADS  Google Scholar 

  27. J.H. Kuhn, J. Kaplan, E.G.O. Safiani, Nucl. Phys. B 157, 125 (1979)

    Article  ADS  Google Scholar 

  28. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) (Yad. Fiz. 15

    Google Scholar 

  29. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  30. M.A. Gomshi Nobary, J. Phys. G 27, 21 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Moosavi Nejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moosavi Nejad, S.M. Fragmentation functions of \(g \rightarrow \eta_{c}\)(1S0) and \(g \rightarrow J/\psi\)(3S1) considering the role of heavy quarkonium spin. Eur. Phys. J. Plus 130, 136 (2015). https://doi.org/10.1140/epjp/i2015-15136-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15136-y

Keywords

Navigation