Skip to main content

Advertisement

Log in

Cosmic acceleration and anisotropic models with magnetic field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Plane symmetric cosmological models are investigated with or without any dark energy components in the field equations. Keeping an eye on the recent observational constraints concerning the accelerating phase of expansion of the universe, the role of the magnetic field is assessed. In the absence of dark energy components, the magnetic field can favour an accelerating model even if we take a linear relationship between the directional Hubble parameters. In the presence of dark energy components in the form of a time-varying cosmological constant, the influence of the magnetic field is found to be limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.G. Reiss et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  2. A.G. Reiss et al., Astron. J. 607, 665 (2004).

    Article  Google Scholar 

  3. S. Perlmutter et al., Nature 391, 51 (1998).

    Article  ADS  Google Scholar 

  4. R. Knop et al., Astrophys. J. 598, 102 (2003).

    Article  ADS  Google Scholar 

  5. A.G. Reiss et al., Astrophys. J. 659, 98 (2007).

    Article  ADS  Google Scholar 

  6. D.N. Spergel et al., Astrophys. J. S 170, 377 (2007).

    Article  ADS  Google Scholar 

  7. A. Blanchard et al., Astrophys. J. 659, 98 (2007).

    Article  Google Scholar 

  8. S.W. Allen et al., Mon. Not. R. Astron. Soc. 353, 457 (2004).

    Article  ADS  Google Scholar 

  9. D.J. Eisenstein et al., Astrophys. J. 633, 560 (2005).

    Article  ADS  Google Scholar 

  10. M. Sullivan et al., Astrophys. J. 737, 102 (2011).

    Article  ADS  Google Scholar 

  11. N. Suzuki, et al., Astrophys. J 746, 85 (2012).

    Article  ADS  Google Scholar 

  12. Planck Collaboration (P.A.R. Ade et al.), Astron. Astrophys. 571, A1 (2014).

    Article  ADS  Google Scholar 

  13. Planck Collaboration (P.A.R. Ade et al.), Astron. Astrophys. 571, A16 (2014).

    Article  ADS  Google Scholar 

  14. Planck Collaboration (P.A.R. Ade et al.), Astron. Astrophys. 571, A22 (2014).

    Article  ADS  Google Scholar 

  15. Planck Collaboration (P.A.R. Ade et al.), Astron. Astrophys. 571, A24 (2014).

    Article  ADS  Google Scholar 

  16. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. R.R. Caldwell, M. Kamionkowski, Annu. Rev. Nucl. Part. Sci. 59, 397 (2009).

    Article  ADS  Google Scholar 

  18. A. Silvestri, M. Trodden, Rep. Prog. Phys. 72, 096901 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  19. P. Astier, R. Pain, arXiv:1204.5493[astro-ph.CO] (2012).

  20. S. Carroll, Living Rev. Relativ. 4, 1 (2001) [online article].

    Article  ADS  Google Scholar 

  21. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. B. Ratra, P.J.E. Peebles, Phys. Rev. D 37, 321 (1988).

    Article  Google Scholar 

  23. R.R. Caldwell, Phys. Lett. B 545, 23 (2002).

    Article  ADS  Google Scholar 

  24. F. Piazza, S. Tsujikawa, JCAP 07, 004 (2004).

    Article  ADS  Google Scholar 

  25. T. Chiba, T. Okabe, M. Yamaguchi, Phys. Rev. D 62, 02351 (2000).

    Google Scholar 

  26. S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  27. A. de Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010) http://www.livingreviews.org.

    Article  ADS  Google Scholar 

  28. S. Nojiri, S.D. Odintsov, M. Sasaki, Phys. Rev. D 71, 123509 (2005).

    Article  ADS  Google Scholar 

  29. S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. M. Li, Phys. Lett. B 603, 1 (2004).

    Article  ADS  Google Scholar 

  31. WMAP Collaboration (G. Hinshaw et al.), Astrophys. J. Suppl. Ser. 180, 225 (2009).

    Article  Google Scholar 

  32. A. Antoniou, L. Perivolaropoulos, JCAP 12, 012 (2012).

    ADS  Google Scholar 

  33. L. Ackerman, S.M. Caroll, M.B. Wise, Phys. Rev. D 75, 083502 (2007).

    Article  ADS  Google Scholar 

  34. F. Ohashi, J. Soda, S. Tsujikawa, JCAP 12, 009 (2013).

    Article  ADS  Google Scholar 

  35. N.E. Groeneboom, L. Ackerman, I.K. Wehus, H.K. Erikesn, Astrophs. J. 722, 452 (2010) arXiv:0911.0150[astro-h.CO].

    Article  ADS  Google Scholar 

  36. R.V. Buiny, A. Berera, T.W. Kephart, Phys. Rev. D 73, 063529 (2006).

    Article  ADS  Google Scholar 

  37. M. Watanabe, S. Kanno, J. Soda, Phys. Rev. Lett. 102, 191302 (2009).

    Article  ADS  Google Scholar 

  38. L. Campanelli, P. Cea, L. Tedesco, Phys. Rev. Lett. 97, 131302 (2006).

    Article  ADS  Google Scholar 

  39. L. Campanelli, P. Cea, L. Tedesco, Phys. Rev. D 76, 063007 (2007).

    Article  ADS  Google Scholar 

  40. L. Campanelli, Phys. Rev. D 80, 063006 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  41. A. Gruppo, Phys. Rev. D 76, 083010 (2010).

    Article  ADS  Google Scholar 

  42. S.K. Tripathy, S.K. Nayak, S.K. Sahu, T.R. Routray, Astrophys. Space Sci. 318, 125 (2008).

    Article  ADS  Google Scholar 

  43. S.K. Tripathy, S.K. Nayak, S.K. Sahu, T.R. Routray, Astrophys. Space Sci. 321, 247 (2009).

    Article  ADS  Google Scholar 

  44. S.K. Tripathy, S.K. Nayak, S.K. Sahu, T.R. Routray, Astrophys. Space Sci. 323, 281 (2009).

    Article  ADS  Google Scholar 

  45. S.K. Tripathy, D. Behera, T.R. Routray, Astrophys. Space Sci. 325, 93 (2010).

    Article  ADS  Google Scholar 

  46. S.K. Tripathy, Int. J. Theor. Phys. 52, 4218 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  47. S.K. Tripathy, Astrophys. Space Sci. 350, 367 (2014).

    Article  ADS  Google Scholar 

  48. D.C. Rodrigues, Phys. Rev. D 77, 023534 (2008).

    Article  ADS  Google Scholar 

  49. M. Sharif, H.R. Kausar, Phys. Lett. B 697, 1 (2011).

    Article  ADS  Google Scholar 

  50. G. Mohanty, K.L. Mahanta, Int. J. Theor. Phys. 47, 2430 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  51. Elisabete M. de Gouveia Dal Pino, AIP Conf. Proc. 875, 289 (2006).

    Article  ADS  Google Scholar 

  52. D. Grasso, H.R. Rubinstein, Phys. Rep. 348, 163 (2001).

    Article  ADS  Google Scholar 

  53. M. Giovannini, Int. J. Mod. Phys. D 13, 391 (2004).

    Article  ADS  MATH  Google Scholar 

  54. M. Giovannini, Lect. Notes Phys. 737, 863 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  55. A.A. Andrianov, F. Cannata, A.Y. Kamenshchik, D. Regoli, JCAP 10, 019 (2008) arXiv:0806.1844 [hep-th].

    Article  ADS  Google Scholar 

  56. A. Vilenkin, Phys. Rev. D 24, 2082 (1981).

    Article  ADS  Google Scholar 

  57. A. Vilenkin, in: Three Hundred Years of Gravitation, edited by S.W. Hawking, W. Israel, (Cambridge University Press, Cambridge, 1987) p. 499.

  58. A.A. Fraisse, C. Ringeval, D.N. Spergel, F.R. Bouchet, Phys. Rev. D 78, 043535 (2008).

    Article  ADS  Google Scholar 

  59. G.A. Barber, Gen. Relativ. Gravit. 14, 117 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  60. C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. G.A. Barber, Astrophys. Space Sci. 305, 169 (2006).

    Article  ADS  Google Scholar 

  62. C. Brans, Gen. Relativ. Gravit. 19, 949 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  63. G.A. Barber, arXiv:1009.5862 [physics.gen-ph] (2010).

  64. A. Pradhan, A.K. Vishwakarma, Int. J. Mod. Phys. D 11, 1195 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  65. C.P. Singh, Mod. Phys. Lett. A 27, 1250070 (2012).

    Article  ADS  Google Scholar 

  66. S.D. Katore, A.Y. Saikh, Int. J. Mod. Phys. A 26, 1651 (2011).

    Article  ADS  MATH  Google Scholar 

  67. J.A. Belinchon, Astrophys. Space Sci. 346, 237 (2013).

    Article  ADS  MATH  Google Scholar 

  68. J.M. Ramirez, J. Socorro, Int. J. Theor. Phys. 52, 2867 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  69. Planck Collaboration (P.A.R. Ade et al.), Astron. Astrophy. 571, A25 (2014).

    Article  ADS  Google Scholar 

  70. S.K. Tripathy, D. Behera, B. Mishra, arXiv:1410.3156 [physics. gen-ph].

  71. D. Rapetti, S.W. Allen, M.A. Amin, R.D. Blanford, Mon. Not. R. Astron. Soc. 375, 1510 (2007) arXiv: astro-ph 0605683.

    Article  ADS  Google Scholar 

  72. R. Giostri et al., JCAP 03, 027 (2012) arXiv: astro-ph 1203.3213.

    Article  ADS  Google Scholar 

  73. T. Takabayasi, Prog. Theor. Phys. 51, 262 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  74. T. Takabayasi, Prog. Theor. Phys. 52, 1910 (1974).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  75. T. Ruggeri, A. Strumia, Prog. Theor. Phys. 59, 2121 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Tripathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathy, S.K., Mahanta, K.L. Cosmic acceleration and anisotropic models with magnetic field. Eur. Phys. J. Plus 130, 30 (2015). https://doi.org/10.1140/epjp/i2015-15030-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15030-8

Keywords

Navigation