Skip to main content
Log in

Inertial active harmonic particle with memory induced spreading by viscoelastic suspension

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We investigate the self-propulsion of an inertial active particle confined in a two-dimensional harmonic trap. The particle is suspended in a non-Newtonian or viscoelastic suspension with a friction kernel that decays exponentially with a time constant characterizing the memory timescale or transient elasticity of the medium. By solving the associated non-Markovian dynamics, we identify two regimes in parameter space distinguishing the oscillatory and non-oscillatory behavior of the particle motion. By simulating the particle trajectories and exactly calculating the steady-state probability distribution functions and mean square displacement; interestingly, we observe that with an increase in the memory time scale, the effective temperature of the environment increases. As a consequence, the particle becomes energetic and spread away from the center, covering larger space inside the confinement. On the other hand, with an increase in the duration of the activity, the particle becomes trapped by the harmonic confinement.

Graphical abstract

Schematic diagram of the research problem. Self-propulsion of an inertial active particle in a two dimensional harmonic well subjected to a viscoelastic environment

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets that support the main findings of our study are available upon reasonable request from the corresponding author.

References

  1. C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016). https://doi.org/10.1103/RevModPhys.88.045006

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Ramaswamy, Active matter. J. Stat. Mech. 2017, 054002 (2017). https://doi.org/10.1088/1742-5468/aa6bc5

    Article  MathSciNet  Google Scholar 

  3. G. Gompper, R. G. Winkler, T. Speck, A. Solon, C. Nardini, F. Peruani, H. Löwen, R. Golestanian, U. B. Kaupp, L. Alvarez, T. Kiørboe, E. Lauga, W. C. K. Poon, A. DeSimone, S. Muiños-Landin, A. Fischer, N. A. Söker, F. Cichos, R. Kapral, e. a. P Gaspard, The 2020 motile active matter roadmap, J. Phys.: Condens. Matter 32, 193001 (2020) https://doi.org/10.1088/1361-648X/ab6348

  4. P. Pietzonka, The oddity of active matter. Nat. Phys. 17, 1193 (2021). https://doi.org/10.1038/s41567-021-01318-9

    Article  Google Scholar 

  5. G. De Magistris, D. Marenduzzo, An introduction to the physics of active matter. Physica A 418, 65 (2015). https://doi.org/10.1016/j.physa.2014.06.061

    Article  ADS  Google Scholar 

  6. A. Walther, A.H.E. Müller, Janus particles: synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113, 5194 (2013). https://doi.org/10.1021/cr300089t

    Article  Google Scholar 

  7. J.R. Howse, R.A. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007). https://doi.org/10.1103/PhysRevLett.99.048102

    Article  ADS  Google Scholar 

  8. G. Wang, T.V. Phan, S. Li, M. Wombacher, J. Qu, Y. Peng, G. Chen, D.I. Goldman, S.A. Levin, R.H. Austin, L. Liu, Emergent field-driven robot swarm states. Phys. Rev. Lett. 126, 108002 (2021). https://doi.org/10.1103/PhysRevLett.126.108002

    Article  ADS  Google Scholar 

  9. B. Lehle, J. Peinke, Analyzing a stochastic process driven by Ornstein-Uhlenbeck noise. Phys. Rev. E 97, 012113 (2018). https://doi.org/10.1103/PhysRevE.97.012113

    Article  ADS  Google Scholar 

  10. L.L. Bonilla, Active Ornstein-Uhlenbeck particles. Phys. Rev. E 100, 022601 (2019). https://doi.org/10.1103/PhysRevE.100.022601

    Article  ADS  MathSciNet  Google Scholar 

  11. D. Martin, J. O’Byrne, M.E. Cates, É. Fodor, C. Nardini, J. Tailleur, F. van Wijland, Statistical mechanics of active Ornstein-Uhlenbeck particles. Phys. Rev. E 103, 032607 (2021). https://doi.org/10.1103/PhysRevE.103.032607

    Article  ADS  MathSciNet  Google Scholar 

  12. L. Caprini, U. Marini Bettolo Marconi, A. Puglisi, A. Vulpiani, Active escape dynamics: the effect of persistence on barrier crossing, J. Chem. Phys. 150, 024902 (2019) https://doi.org/10.1063/1.5080537

  13. L. Caprini, U. Marini Bettolo Marconi, Inertial self-propelled particles. J. Chem. Phys. 154, 024902 (2021). https://doi.org/10.1063/5.0030940

    Article  ADS  Google Scholar 

  14. L. Dabelow, S. Bo, R. Eichhorn, Irreversibility in active matter systems: fluctuation theorem and mutual information. Phys. Rev. X 9, 021009 (2019). https://doi.org/10.1103/PhysRevX.9.021009

    Article  Google Scholar 

  15. L. Berthier, E. Flenner, G. Szamel, Glassy dynamics in dense systems of active particles. J. Chem. Phys. 150, 200901 (2019). https://doi.org/10.1063/1.5093240

    Article  ADS  Google Scholar 

  16. R. Wittmann, J.M. Brader, A. Sharma, U.M.B. Marconi, Effective equilibrium states in mixtures of active particles driven by colored noise. Phys. Rev. E 97, 012601 (2018). https://doi.org/10.1103/PhysRevE.97.012601

    Article  ADS  Google Scholar 

  17. Y. Fily, Self-propelled particle in a nonconvex external potential: persistent limit in one dimension. J. Chem. Phys. 150, 174906 (2019). https://doi.org/10.1063/1.5085759

    Article  ADS  Google Scholar 

  18. D. Mandal, K. Klymko, M.R. DeWeese, Entropy production and fluctuation theorems for active matter. Phys. Rev. Lett. 119, 258001 (2017). https://doi.org/10.1103/PhysRevLett.119.258001

    Article  ADS  Google Scholar 

  19. É. Fodor, C. Nardini, M.E. Cates, J. Tailleur, P. Visco, F. van Wijland, How far from equilibrium is active matter? Phys. Rev. Lett. 117, 038103 (2016). https://doi.org/10.1103/PhysRevLett.117.038103

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Muhsin, M. Sahoo, A. Saha, Orbital magnetism of an active particle in viscoelastic suspension. Phys. Rev. E 104, 034613 (2021). https://doi.org/10.1103/PhysRevE.104.034613

    Article  ADS  MathSciNet  Google Scholar 

  21. B. ten Hagen, S. van Teeffelen, H. Lowen, Non-gaussian behaviour of a self-propelled particle on a substrate. Condens. Matter Phys. 12, 725 (2009). https://doi.org/10.5488/CMP.12.4.725

    Article  ADS  Google Scholar 

  22. B. ten Hagen, S. van Teeffelen, H. Lowen, Brownian motion of a self-propelled particle. J. Phys. Condens. Matter 23, 194119 (2011). https://doi.org/10.1088/0953-8984/23/19/194119

    Article  ADS  Google Scholar 

  23. M.E. Cates, J. Tailleur, When are active Brownian particles and run-and-tumble particles equivalent? consequences for motility-induced phase separation. Euro. Phys. Lett. 101, 20010 (2013). https://doi.org/10.1209/0295-5075/101/20010

    Article  ADS  Google Scholar 

  24. K. Malakar, A. Das, A. Kundu, K.V. Kumar, A. Dhar, Steady state of an active Brownian particle in a two-dimensional harmonic trap. Phys. Rev. E 101, 022610 (2020). https://doi.org/10.1103/PhysRevE.101.022610

    Article  ADS  Google Scholar 

  25. I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110, 238301 (2013). https://doi.org/10.1103/PhysRevLett.110.238301

    Article  ADS  Google Scholar 

  26. Y. Fily, M.C. Marchetti, A thermal phase separation of self-propelled particles with no alignment. Phys. Rev. Lett. 108, 235702 (2012). https://doi.org/10.1103/PhysRevLett.108.235702

    Article  ADS  Google Scholar 

  27. J. Stenhammar, D. Marenduzzo, R.J. Allen, M.E. Cates, Phase behaviour of active Brownian particles: the role of dimensionality. Soft Matter 10, 1489 (2014). https://doi.org/10.1039/C3SM52813H

    Article  ADS  Google Scholar 

  28. J. Bialké, J.T. Siebert, H. Löwen, T. Speck, Negative interfacial tension in phase-separated active brownian particles. Phys. Rev. Lett. 115, 098301 (2015). https://doi.org/10.1103/PhysRevLett.115.098301

    Article  ADS  Google Scholar 

  29. A.P. Solon, J. Stenhammar, R. Wittkowski, M. Kardar, Y. Kafri, M.E. Cates, J. Tailleur, Pressure and phase equilibria in interacting active brownian spheres. Phys. Rev. Lett. 114, 198301 (2015). https://doi.org/10.1103/PhysRevLett.114.198301

    Article  ADS  Google Scholar 

  30. L. Caprini, C. Maggi, Marini Bettolo Marconi U, Collective effects in confined active brownian particles. J. Chem. Phys. 154, 244901 (2021). https://doi.org/10.1063/5.0051315

  31. L. Caprini, U.M.B. Marconi, C. Maggi, M. Paoluzzi, A. Puglisi, Hidden velocity ordering in dense suspensions of self-propelled disks. Phys. Rev. Res. 2, 023321 (2020). https://doi.org/10.1103/PhysRevResearch.2.023321

    Article  Google Scholar 

  32. D.M. van Roon, G. Volpe, M.M. Telo da Gama, N.A.M. Araújo, The role of disorder in the motion of chiral active particles in the presence of obstacles. Soft Matter 18, 6899 (2022). https://doi.org/10.1039/D2SM00694D

    Article  ADS  Google Scholar 

  33. C. Scholz, S. Jahanshahi, A. Ldov, H. Löwen, Inertial delay of self-propelled particles. Nat. Commun. 9, 5156 (2018). https://doi.org/10.1038/s41467-018-07596-x

    Article  ADS  Google Scholar 

  34. S. Mandal, B. Liebchen, H. Löwen, Motility-induced temperature difference in coexisting phases. Phys. Rev. Lett. 123, 228001 (2019). https://doi.org/10.1103/PhysRevLett.123.228001

    Article  ADS  Google Scholar 

  35. L. Caprini, A. Ldov, R.K. Gupta, H. Ellenberg, R. Wittmann, H. Löwen, C. Scholz, Emergent memory from tapping collisions in active granular matter. Commun. Phys. 7, 52 (2024). https://doi.org/10.1038/s42005-024-01540-w

    Article  Google Scholar 

  36. H.C. Berg, D.A. Brown, Chemotaxis in escherichia coli analysed by three-dimensional tracking. Nature 239, 500 (1972). https://doi.org/10.1038/239500a0

    Article  ADS  Google Scholar 

  37. K. Martens, L. Angelani, R. Di Leonardo, L. Bocquet, Probability distributions for the run-and-tumble bacterial dynamics: an analogy to the Lorentz model. Eur. Phys. J. E 35, 84 (2012). https://doi.org/10.1140/epje/i2012-12084-y

    Article  Google Scholar 

  38. G.H.P. Nguyen, R. Wittmann, H. Lowen, Active Ornstein-Uhlenbeck model for self-propelled particles with inertia. J. Phys. Condens. Matter 34, 035101 (2022). https://doi.org/10.1088/1361-648X/ac2c3f

    Article  ADS  Google Scholar 

  39. A. Noushad, S. Shajahan, M. Sahoo, Velocity auto correlation function of a confined Brownian particle. Eur. Phys. J. B 94, 202 (2021). https://doi.org/10.1140/epjb/s10051-021-00217-5

    Article  ADS  Google Scholar 

  40. M. Muhsin, M. Sahoo, Inertial active Ornstein-Uhlenbeck particle in the presence of a magnetic field. Phys. Rev. E 106, 014605 (2022). https://doi.org/10.1103/PhysRevE.106.014605

    Article  ADS  MathSciNet  Google Scholar 

  41. F.N.C. Paraan, M.P. Solon, J.P. Esguerra, Brownian motion of a charged particle driven internally by correlated noise. Phys. Rev. E 77, 022101 (2008). https://doi.org/10.1103/PhysRevE.77.022101

    Article  ADS  Google Scholar 

  42. F.J. Sevilla, R.F. Rodríguez, J.R. Gomez-Solano, Generalized Ornstein-Uhlenbeck model for active motion. Phys. Rev. E 100, 032123 (2019). https://doi.org/10.1103/PhysRevE.100.032123

  43. J.R. Gomez-Solano, R.F. Rodríguez, E. Salinas-Rodríguez, Nonequilibrium dynamical structure factor of a dilute suspension of active particles in a viscoelastic fluid. Phys. Rev. E 106, 054602 (2022). https://doi.org/10.1103/PhysRevE.106.054602

    Article  ADS  MathSciNet  Google Scholar 

  44. N. Narinder, C. Bechinger, J.R. Gomez-Solano, Memory-induced transition from a persistent random walk to circular motion for achiral microswimmers. Phys. Rev. Lett. 121, 078003 (2018). https://doi.org/10.1103/PhysRevLett.121.078003

    Article  ADS  Google Scholar 

  45. A.R. Sprenger, C. Bair, H. Löwen, Active Brownian motion with memory delay induced by a viscoelastic medium. Phys. Rev. E 105, 044610 (2022). https://doi.org/10.1103/PhysRevE.105.044610

    Article  ADS  MathSciNet  Google Scholar 

  46. C. Lozano, J.R. Gomez-Solano, C. Bechinger, Run-and-tumble-like motion of active colloids in viscoelastic media. New J. Phys. 20, 015008 (2018). https://doi.org/10.1088/1367-2630/aa9ed1

    Article  ADS  Google Scholar 

  47. N. Narinder, J.R. Gomez-Solano, C. Bechinger, Active particles in geometrically confined viscoelastic fluids. New J. Phys. 21, 093058 (2019). https://doi.org/10.1088/1367-2630/ab40e0

    Article  ADS  Google Scholar 

  48. R.F. Fox, I.R. Gatland, R. Roy, G. Vemuri, Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise. Phys. Rev. A 38, 5938 (1988). https://doi.org/10.1103/PhysRevA.38.5938

    Article  ADS  Google Scholar 

  49. N. VAN KAMPEN, Chapter viii - the fokker-planck equation, in Stochastic Processes in Physics and Chemistry (Third Edition), North-Holland Personal Library, edited by N. VAN KAMPEN (Elsevier, Amsterdam, 2007) third edition ed., pp. 193–218 https://doi.org/10.1016/B978-044452965-7/50011-8

  50. M. Muhsin, M. Sahoo, Inertial active ratchet: simulation versus theory. Phys. Rev. E 107, 054601 (2023). https://doi.org/10.1103/PhysRevE.107.054601

    Article  ADS  MathSciNet  Google Scholar 

  51. N. Arsha, K. Jepsin, M. Sahoo, Steady state correlations and induced trapping of an inertial aoup particle. Int. J. Mod. Phys. B 37, 2350207 (2023)

    Article  ADS  Google Scholar 

  52. C. Maggi, M. Paoluzzi, N. Pellicciotta, A. Lepore, L. Angelani, R. Di Leonardo, Generalized energy equipartition in harmonic oscillators driven by active baths. Phys. Rev. Lett. 113, 238303 (2014). https://doi.org/10.1103/PhysRevLett.113.238303

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the 8th statphysics community meeting (ICTS/ISPCM2023/02), during which a part of the work was done. MS acknowledges the start-up grant from UGC, state plan fund from the University of Kerala, SERB-SURE grant (SUR/2022/0377), CRG grant (CRG/2023/002026) from DST, Govt. of India, for financial support. MM acknowledges SERB international travel grant (ITS/2023/002740) from DST, Govt. of India, for financial support.

Author information

Authors and Affiliations

Authors

Contributions

MS designed the research problem and supervised the complete work. The analytical calculation and simulation results are done by both FA and MM. FA, MM and MS analyzed the data. MS wrote the final version of the manuscript which was initially drafted by both FA and MM.

Corresponding author

Correspondence to M. Sahoo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adersh, F., Muhsin, M. & Sahoo, M. Inertial active harmonic particle with memory induced spreading by viscoelastic suspension. Eur. Phys. J. E 47, 33 (2024). https://doi.org/10.1140/epje/s10189-024-00424-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-024-00424-9

Navigation