Skip to main content
Log in

Non-specific cargo–filament interactions slow down motor-driven transport

  • Regular Article - Living Systems
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Active, motor-based cargo transport is important for many cellular functions and cellular development. However, the cell interior is complex and crowded and could have many weak, non-specific interactions with the cargo being transported. To understand how cargo-environment interactions will affect single motor cargo transport and multi-motor cargo transport, we use an artificial quantum dot cargo bound with few (~ 1) to many (~ 5–10) motors allowed to move in a dense microtubule network. We find that kinesin-driven quantum dot cargo is slower than single kinesin-1 motors. Excitingly, there is some recovery of the speed when multiple motors are attached to the cargo. To determine the possible mechanisms of both the slow down and recovery of speed, we have developed a computational model that explicitly incorporates multi-motor cargos interacting non-specifically with nearby microtubules, including, and predominantly with the microtubule on which the cargo is being transported. Our model has recovered the experimentally measured average cargo speed distribution for cargo-motor configurations with few and many motors, implying that numerous, weak, non-specific interactions can slow down cargo transport and multiple motors can reduce these interactions thereby increasing velocity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sets generated during the current study are available from the corresponding authors on reasonable request.

References

  1. J.L. Ross, M.Y. Ali, D.M. Warshaw, Cargo transport: molecular motors navigate a complex cytoskeleton. Curr. Opin. Cell Biol. 20, 41–47 (2008)

    Google Scholar 

  2. R.D. Vale, The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003)

    Google Scholar 

  3. N. Hirokawa, Y. Noda, Y. Tanaka, S. Niwa, Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682–696 (2009)

    Google Scholar 

  4. N. Hirokawa, R. Takemura, Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6, 201–214 (2005)

    Google Scholar 

  5. E. Chevalier-Larsen, E.L. Holzbaur, Axonal transport and neurodegenerative disease. Biochimica et Biophysica Acta (BBA)-Mol. Basis Dis. 1762, 1094–1108 (2006)

    Google Scholar 

  6. S.T. Brady, G.A. Morfini, Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol. Dis. 105, 273–282 (2017)

    Google Scholar 

  7. S. Rice, A.W. Lin, D. Safer, C.L. Hart, N. Naber, B.O. Carragher, S.M. Cain, E. Pechatnikova, E.M. Wilson-Kubalek, M. Whittaker, E. Pate, R. Cooke, E.W. Taylor, R.A. Milligan, R.D. Vale, A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999)

    ADS  Google Scholar 

  8. M. Kikkawa, Y. Okada, N. Hirokawa, 15 Å resolution model of the monomeric kinesin motor, KIF1A. Cell 100, 241–252 (2000)

    Google Scholar 

  9. S.A. Kuznetsov, V.I. Gelfand, Bovine brain kinesin is a microtubule-activated ATPase. Proc. Natl. Acad. Sci. 83, 8530–8534 (1986)

    ADS  Google Scholar 

  10. K. Svoboda, S.M. Block, Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994)

    Google Scholar 

  11. S.M. Block, L.S.B. Goldstein, B.J. Schnapp, Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990)

    ADS  Google Scholar 

  12. S.P. Gilbert, M.R. Webb, M. Brune, K.A. Johnson, Pathway of processive ATP hydrolysis by kinesin. Nature 373, 671–676 (1995)

    ADS  Google Scholar 

  13. W.O. Hancock, J. Howard, Kinesin’s processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc. Natl. Acad. Sci. 96, 13147–13152 (1999)

    ADS  Google Scholar 

  14. W.H. Liang, Q. Li, K.M. Rifat Faysal, S.J. King, A. Gopinathan, J. Xu, Microtubule defects influence kinesin-based transport in vitro. Biophys. J. 110, 2229–2240 (2016)

    ADS  Google Scholar 

  15. M.W. Gramlich, L. Conway, W.H. Liang, J.A. Labastide, S.J. King, J. Xu, J.L. Ross, Single molecule investigation of kinesin-1 motility using engineered microtubule defects. Sci. Rep. 7(1), 44290 (2017)

    ADS  Google Scholar 

  16. J.L. Ross, H. Shuman, E.L.F. Holzbaur, Y.E. Goldman, Kinesin and dynein-dynactin at intersecting microtubules: motor density affects dynein function. Biophys. J. 94, 3115–3125 (2008)

    ADS  Google Scholar 

  17. L. Conway, D. Wood, E. Tüzel, J.L. Ross, Motor transport of self-assembled cargos in crowded environments. Proc. Natl. Acad. Sci. 109, 20814–20819 (2012)

    ADS  Google Scholar 

  18. P.C. Bressloff, J.M. Newby, Stochastic models of intracellular transport. Rev. Mod. Phys. 85, 135 (2013)

    ADS  Google Scholar 

  19. F. Jülicher, A. Ajdari, J. Prost, Modeling molecular motors. Rev. Mod. Phys. 69, 1269–1282 (1997)

    ADS  Google Scholar 

  20. R.D. Astumian, Thermodynamics and kinetics of a Brownian motor. Science 276, 917–922 (1997)

    Google Scholar 

  21. M.E. Fisher, A.B. Kolomeisky, Simple mechanochemistry describes the dynamics of kinesin molecules. Proc. Natl. Acad. Sci. 98, 7748–7753 (2001)

    ADS  Google Scholar 

  22. T. Guérin, J. Prost, P. Martin, J.-F. Joanny, Coordination and collective properties of molecular motors: theory. Curr. Opin. Cell Biol. 22, 14–20 (2010)

    Google Scholar 

  23. M. Badoual, F. Julicher, J. Prost, Bidirectional cooperative motion of molecular motors. Proc. Natl. Acad. Sci. 99, 6696–6701 (2002)

    ADS  Google Scholar 

  24. S. Klumpp, R. Lipowsky, Cooperative cargo transport by several molecular motors. Proc. Natl. Acad. Sci. 102, 17284–17289 (2005)

    ADS  Google Scholar 

  25. M.J.I. Müller, S. Klumpp, R. Lipowsky, Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc. Natl. Acad. Sci. U S A 105, 4609–4614 (2008)

    ADS  Google Scholar 

  26. D.K. Jamison, J.W. Driver, M.R. Diehl, Cooperative responses of multiple kinesins to variable and constant loads. J. Biol. Chem. 287, 3357–3365 (2012)

    Google Scholar 

  27. A. Kunwar, A. Mogilner, Robust transport by multiple motors with nonlinear force–velocity relations and stochastic load sharing. Phys. Biol. 7, 016012 (2010)

    ADS  Google Scholar 

  28. A. Vilfan, E. Frey, F. Schwabl, Force-velocity relations of a two-state crossbridge model for molecular motors. Europhys. Lett. 45, 283–289 (1999)

    ADS  Google Scholar 

  29. S. Leibler, D.A. Huse, Porters versus rowers: a unified stochastic model of motor proteins. J. Cell Biol. 121, 1357–1368 (1993)

    Google Scholar 

  30. B. Geislinger, R. Kawai, Brownian molecular motors driven by rotation-translation coupling. Phys. Rev. E 74, 011912 (2006)

    ADS  Google Scholar 

  31. F. Jülicher, J. Prost, Cooperative molecular motors. Phys. Rev. Lett. 75, 2618–2621 (1995)

    ADS  Google Scholar 

  32. P. Bressloff, J. Newby, Directed intermittent search for hidden targets. New J. Phys. 11, 023033 (2009)

    ADS  Google Scholar 

  33. A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, Numerical modeling of molecular-motor-assisted transport of adenoviral vectors in a spherical cell. Comput. Methods Biomech. Biomed. Engin. 11, 215–222 (2008)

    Google Scholar 

  34. D.A. Smith, R.M. Simmons, Models of motor-assisted transport of intracellular particles. Biophys. J. 80, 45–68 (2001)

    ADS  Google Scholar 

  35. C. Loverdo, O. Bénichou, M. Moreau, R. Voituriez, Enhanced reaction kinetics in biological cells. Nat. Phys. 4, 134–137 (2008)

    Google Scholar 

  36. S.M.A. Tabei, S. Burov, H.Y. Kim, A. Kuznetsov, T. Huynh, J. Jureller, L.H. Philipson, A.R. Dinner, N.F. Scherer, Intracellular transport of insulin granules is a subordinated random walk. Proc. Natl. Acad. Sci. 110, 4911–4916 (2013)

    ADS  Google Scholar 

  37. A. Kahana, G. Kenan, M. Feingold, M. Elbaum, R. Granek, Active transport on disordered microtubule networks: the generalized random velocity model. Phys. Rev. E 78, 051912 (2008)

    ADS  Google Scholar 

  38. A.E. Hafner, H. Rieger, Spatial organization of the cytoskeleton enhances cargo delivery to specific target areas on the plasma membrane of spherical cells. Phys. Biol. 13, 066003 (2016)

    ADS  Google Scholar 

  39. A.E. Hafner, H. Rieger, Spatial cytoskeleton organization supports targeted intracellular transport. Biophys. J. 114, 1420–1432 (2018)

    ADS  Google Scholar 

  40. D. Ando, N. Korabel, K.C. Huang, A. Gopinathan, Cytoskeletal network morphology regulates intracellular transport dynamics. Biophys. J. 109, 1574–1582 (2015)

    ADS  Google Scholar 

  41. M. Scholz, S. Burov, K.L. Weirich, B.J. Scholz, S.M.A. Tabei, M.L. Gardel, A.R. Dinner, Cycling state that can lead to glassy dynamics in intracellular transport. Phys. Rev. X 6, 011037 (2016)

    Google Scholar 

  42. I. Goychuk, V.O. Kharchenko, R. Metzler, How molecular motors work in the crowded environment of living cells: coexistence and efficiency of normal and anomalous transport. PLoS ONE 9(3), e91700 (2014)

    ADS  Google Scholar 

  43. K. Sozański, F. Ruhnow, A. Wiśniewska, M. Tabaka, S. Diez, R. Hołyst, Small crowders slow down kinesin-1 stepping by hindering motor domain diffusion. Phys. Rev. Lett. 115, 218102 (2015)

    ADS  Google Scholar 

  44. G. Knoops, C. Vanderzande, Motion of kinesin in a viscoelastic medium. Phys. Rev. E 97, 052408 (2018)

    ADS  Google Scholar 

  45. J.P. Bergman, M.J. Bovyn, F.F. Doval, A. Sharma, M.V. Gudheti, S.P. Gross, J.F. Allard, M.D. Vershinin, Cargo navigation across 3D microtubule intersections. Proc. Natl. Acad. Sci. U.S.A. 115, 537–542 (2018)

    ADS  Google Scholar 

  46. C. Kural, Kinesin and dynein move a peroxisome in vivo: A Tug-of-War or coordinated movement? Science 308, 1469–1472 (2005)

    ADS  Google Scholar 

  47. M.C. De Rossi, D.E. Wetzler, L. Benseñor, M.E. De Rossi, M. Sued, D. Rodríguez, V. Levi, Mechanical coupling of microtubule-dependent motor teams during peroxisome transport in Drosophila S2 cells. Biochimica et Biophysica Acta BBA General Subj. 1861, 3178–3189 (2017)

    Google Scholar 

  48. C. Kural, A.S. Serpinskaya, Y.-H. Chou, R.D. Goldman, V.I. Gelfand, P.R. Selvin, Tracking melanosomes inside a cell to study molecular motors and their interaction. Proc. Natl. Acad. Sci. 104, 5378–5382 (2007)

    ADS  Google Scholar 

  49. V. Levi, A.S. Serpinskaya, E. Gratton, V. Gelfand, Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors. Biophys. J. 90, 318–327 (2006)

    ADS  Google Scholar 

  50. D.B. Hill, M.J. Plaza, K. Bonin, G. Holzwarth, Fast vesicle transport in PC12 neurites: velocities and forces. Eur. Biophys. J. 33, 623–632 (2004)

    Google Scholar 

  51. H.T. Vu, S. Chakrabarti, M. Hinczewski, D. Thirumalai, Discrete step sizes of molecular motors lead to bimodal non-Gaussian velocity distributions under force. Phys. Rev. Lett. 117, 078101 (2016)

    ADS  Google Scholar 

  52. L. Scharrel, R. Ma, R. Schneider, F. Jülicher, S. Diez, Multimotor transport in a system of active and inactive kinesin-1 motors. Biophys. J. 107, 365–372 (2014)

    ADS  Google Scholar 

  53. J. Xu, Z. Shu, S.J. King, S.P. Gross, Tuning multiple motor travel via single motor velocity: velocity control of travel distance. Traffic 13, 1198–1205 (2012)

    Google Scholar 

  54. A.K. Efremov, A. Radhakrishnan, D.S. Tsao, C.S. Bookwalter, K.M. Trybus, M.R. Diehl, Delineating cooperative responses of processive motors in living cells. Proc. Natl. Acad. Sci. 111, E334–E343 (2014)

    ADS  Google Scholar 

  55. E.L. Holzbaur, Y.E. Goldman, Coordination of molecular motors: from in vitro assays to intracellular dynamics. Curr. Opin. Cell Biol. 22, 4–13 (2010)

    Google Scholar 

  56. J. Xu, S.J. King, M. Lapierre-Landry, B. Nemec, Interplay between velocity and travel distance of kinesin-based transport in the presence of Tau. Biophys. J. 105, L23–L25 (2013)

    Google Scholar 

  57. D.W. Pierce, R.D. Vale, Single-molecule fluorescence detection of green fluorescence protein and application to single-protein dynamics. Methods Cell Biol. 1999, 49–74 (1998)

    Google Scholar 

  58. J. Peloquin, Y. Komarova, G. Borisy, Conjugation of fluorophores to tubulin. Nat. Methods 2, 299–303 (2005)

    Google Scholar 

  59. L. Conway, J.L. Ross, Measuring transport of motor cargos. Fluoresc. Methods Mol. Motors 235–52 (2014)

  60. A.M. Stein, D.A. Vader, L.M. Jawerth, D.A. Weitz, L.M. Sander, An algorithm for extracting the network geometry of three-dimensional collagen gels. J. Microsc. 232, 463–475 (2008)

    MathSciNet  Google Scholar 

  61. A. Kunwar, M. Vershinin, J. Xu, S.P. Gross, Stepping, strain gating, and an unexpected force velocity curve for multiple-motor-based transport. Curr. Biol. 18, 1173–1183 (2008)

    Google Scholar 

  62. N. Sarpangala, A. Gopinathan, Cargo surface fluidity can reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. PLoS Comput. Biol. 18, 1–32 (2022)

    Google Scholar 

  63. J.O. Wilson, D.A. Quint, A. Gopinathan et al., Cargo diffusion shortens single-kinesin runs at low viscous drag. Sci. Rep. 9, 4104 (2019)

    ADS  Google Scholar 

  64. C. Leduc, O. Campas, K.B. Zeldovich, A. Roux, P. Jolimaitre, L. Bourel-Bonnet et al., Cooperative extraction of membrane nanotubes by molecular motors. Proc. Natl. Acad. Sci. U.S.A. 101(49), 17096–17101 (2004)

    ADS  Google Scholar 

  65. J.W. Driver, D.K. Jamison, K. Uppulury, A.R. Rogers, A.B. Kolomeisky, M.R. Diehl, Productive cooperation among processive motors depends inversely on their mechanochemical efficiency. Biophys. J. 101(2), 386–395 (2011)

    ADS  Google Scholar 

  66. S. Sahu, L. Herbst, R. Quinn, J.L. Ross, Crowder and surface effects on self-organization of microtubules. Phys. Rev. E 103, 062408 (2021)

    ADS  Google Scholar 

  67. M. Xu, J.L. Ross, L. Valdez, A. Sen, Direct single molecule imaging of enhanced enzyme diffusion. Phys. Rev. Lett. 123, 128101 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

The work presented here was partially supported by National Science Foundation grant PRFB# 1611801 to JAL and NSF INSPIRE Award #1344203 to JLR. JLR was also partially supported by a grant from the Mathers Foundation. RKC was supported by a grant from the Mathers Foundation and Moore Foundation grant # 4308.1.AG and DQ acknowledge support from the National Science Foundation (NSF-DMS-1616926 to AG) and NSF-CREST: Center for Cellular and Biomolecular Machines at UC Merced (NSF-HRD-1547848 and NSF-HRD-2112675 to AG). AG also acknowledges support from the NSF Center for Engineering Mechanobiology grant CMMI-1548571. AG would also like to acknowledge the hospitality of the Aspen Center for Physics, which is supported by National Science Foundation grant PHY-1607611, where some of this work was done.

Author information

Authors and Affiliations

Authors

Contributions

JAL conceived and designed the work, performed data acquisition, analysis, and interpretation of data, drafted and edited the manuscript, and is accountable for the work. DAQ conceived and designed the work, performed simulations and theoretical calculations, analyzed and interpreted data, drafted and edited the manuscript, and is accountable for the work. JAL and DAQ contributed equally to the work. RKC helped with data acquisition, analysis, and interpretation of data. BM helped with data analysis and interpretation of data. AG conceived and designed the simulation work, analyzed and interpreted data, drafted and edited the manuscript, and is accountable for the work. JLR conceived and designed the experimental work, analyzed and interpreted data, drafted and edited the manuscript, and is accountable for the work.

Corresponding authors

Correspondence to Jennifer L. Ross or Ajay Gopinathan.

Ethics declarations

Ethical approval

This study does not report experiments on live vertebrates and/or higher invertebrates. No animals were killed as part of this study.

Additional information

This work is dedicated to Fyl's love of solving a good experimental mystery.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 885 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labastide, J.A., Quint, D.A., Cullen, R.K. et al. Non-specific cargo–filament interactions slow down motor-driven transport. Eur. Phys. J. E 46, 134 (2023). https://doi.org/10.1140/epje/s10189-023-00394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00394-4

Navigation