Skip to main content
Log in

Magnetic resonance free induction decay in geological porous materials

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Magnetic resonance is an important noninvasive technology across life sciences and industry. Free induction decay is the simplest \(^{\mathrm {1}}\)H magnetic resonance measurement method and an important means of probing fast-decaying signals in porous materials such as rocks, lung, and bone. It is commonly assumed that the free induction decay in geological porous materials is single-exponential. We experimentally observed two regimes of free induction decay behavior in geological porous materials: single-exponential and non-exponential decay. Numerical simulations that match experimental data highlight the effect of mass diffusion, especially in the single-exponential behavior. These two regimes of free induction decay in porous materials are associated with a bifurcation point in the solutions of the Bloch–Torrey equation for diffusion of fluids in confined domains in the presence of internal magnetic field gradients. This finding facilitates the extraction of absolute internal magnetic field gradient intensities from simple free induction decay measurements in the laboratory and field. This work also warns against common single-exponential assumptions in surface magnetic resonance methods employed in surveying underground water aquifers.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. V.G. Kiselev, D.S. Novikov, Neuroimage 182, 149 (2018)

    Article  Google Scholar 

  2. B. Meier, J. Kohlrautz, J. Haase, Phys. Rev. Lett. 108, 177602 (2012)

    Article  ADS  Google Scholar 

  3. N.N. Jarenwattananon, S. Glöggler, T. Otto, A. Melkonian, W. Morris, S.R. Burt, O.M. Yaghi, L.-S. Bouchard, Nature 502, 537 (2013)

    Article  ADS  Google Scholar 

  4. N.N. Jarenwattananon, L.-S. Bouchard, Phys. Rev. Lett. 114, 197601 (2015)

    Article  ADS  Google Scholar 

  5. O. Togao, R. Tsuji, Y. Ohno, I. Dimitrov, M. Takahashi, Magn. Reson. Med. 64, 1491 (2010)

    Article  Google Scholar 

  6. M. Garwood, J. Magn. Reson. 229, 49 (2013)

    Article  ADS  Google Scholar 

  7. M. Hertrich, Prog. Nucl. Magn. Reson. Spectrosc. 53, 227 (2008)

    Article  ADS  Google Scholar 

  8. R. Enjilela, J. Guo, B. MacMillan, F. Marica, A. Afrough, B. Balcom, J. Magn. Reson. 326 (2021)

  9. J. Mitchell, T.C. Chandrasekera, D.J. Holland, L.F. Gladden, E.J. Fordham, Phys. Rep. 526, 165 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. Y.-Q. Song, S. Ryu, P.N. Sen, Nature 406, 178 (2000)

    Article  ADS  Google Scholar 

  11. Q. Chen, A.E. Marble, B.G. Colpitts, B.J. Balcom, J. Magn. Reson. 175, 300 (2005)

  12. J. Mitchell, Appl. Magn. Reson. 51, 205 (2020)

    Article  Google Scholar 

  13. U. Yaramanci, M. Müller-Petke, J. Earth Sci. 20, 592 (2009)

    Article  Google Scholar 

  14. E. Grunewald and R. Knight, GEOPHYSICS 77, EN1 (2012)

  15. H.C. Torrey, Phys. Rev. 104, 563 (1956)

    Article  ADS  Google Scholar 

  16. K.R. Brownstein, C.E. Tarr, Phys. Rev. A 19, 2446 (1979)

    Article  ADS  Google Scholar 

  17. H. Cho, Y.-Q. Song, Phys. Rev. Lett. 100, 025501 (2008)

    Article  ADS  Google Scholar 

  18. P.N. Sen, S. Axelrod, J. Appl. Phys. 86, 4548 (1999)

    Article  ADS  Google Scholar 

  19. E.M. Haacke, S. Mittal, Z. Wu, J. Neelavalli, Y.-C.N. Cheng, Am. J. Neuroradiol. 30, 19 (2009)

    Article  Google Scholar 

  20. M.D. Hürlimann, J. Magn. Reson. 131, 232 (1998)

    Article  ADS  Google Scholar 

  21. D.S. Grebenkov, Rev. Mod. Phys. 79, 1077 (2007)

    Article  ADS  Google Scholar 

  22. D. S. Grebenkov, in (2016), pp. 52–110

  23. W.S. Price, NMR Studies of Translational Motion (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  24. S.D. Stoller, W. Happer, F.J. Dyson, Phys. Rev. A 44, 7459 (1991)

    Article  ADS  Google Scholar 

  25. A.L. Sukstanskii, D.A. Yablonskiy, J. Magn. Reson. 157, 92 (2002)

    Article  ADS  Google Scholar 

  26. C.H. Ziener, T. Kampf, G. Melkus, V. Herold, T. Weber, G. Reents, P.M. Jakob, W.R. Bauer, Phys. Rev. E 76, 031915 (2007)

    Article  ADS  Google Scholar 

  27. C.H. Ziener, F.T. Kurz, T. Kampf, Phys. Rev. E 91, 032707 (2015)

    Article  ADS  Google Scholar 

  28. V.G. Kiselev, S. Posse, Magn. Reson. Med. 41, 499 (1999)

    Article  Google Scholar 

  29. V.G. Kiselev, S. Posse, Phys. Rev. Lett. 81, 5696 (1998)

    Article  ADS  Google Scholar 

  30. A. Afrough, M.S. Zamiri, L. Romero-zero, SPE J. 1385 (2017)

  31. H. Safari, B.J. Balcom, A. Afrough, Comput. Geosci. 156, 104895 (2021)

  32. H. Safari, B. Balcom, and A. Afrough, https://doi.org/10.25545/A19OPN (2021)

  33. F. Amour, H.M. Nick, Eng. Geol. 285, 106059 (2021)

    Article  Google Scholar 

  34. M.L. Hjuler, I.L. Fabricius, J. Pet. Sci. Eng. 68, 151 (2009)

    Article  Google Scholar 

  35. American Petroleum Institute, API RP 40 - Recommended Practices for Core Analysis (1998)

  36. O. Faÿ-Gomord, J. Soete, K. Katika, S. Galaup, B. Caline, F. Descamps, E. Lasseur, I.L. Fabricius, J. Saïag, R. Swennen, S. Vandycke, Mar. Pet. Geol. 75, 252 (2016)

    Article  Google Scholar 

  37. A. Afrough, S. Vashaee, L. Romero Zerón, and B. Balcom, Phys. Rev. Appl. 11, (2019)

  38. I.L. Fabricius, Bull. Geol. Soc. Denmark 55, 97 (2007)

    Article  Google Scholar 

  39. D.S. Grebenkov, Concepts Magn. Reson. Part A 32A, 277 (2008)

    Article  Google Scholar 

  40. B. Sun, K.-J. Dunn, Phys. Rev. E 65, 051309 (2002)

    Article  ADS  Google Scholar 

  41. J. Mitchell, T.C. Chandrasekera, M.L. Johns, L.F. Gladden, E.J. Fordham, Phys. Rev. E 81, 026101 (2010)

  42. J. Mitchell, E. Fordham, Phys. Rev. Mater. 3, 055604 (2019)

    Article  Google Scholar 

  43. B. Audoly, P.N. Sen, S. Ryu, Y.-Q. Song, J. Magn. Reson. 164, 154 (2003)

    Article  ADS  Google Scholar 

  44. R. Weisskoff, C.S. Zuo, J.L. Boxerman, B.R. Rosen, Magn. Reson. Med. 31, 601 (1994)

    Article  Google Scholar 

  45. P. Mansfield, P.K. Grannell, Phys. Rev. B 12, 3618 (1975)

  46. D.J. Holland, J. Mitchell, A. Blake, L.F. Gladden, Phys. Rev. Lett. 110, 018001 (2013)

    Article  ADS  Google Scholar 

  47. P.T. Callaghan, A. Coy, D. MacGowan, K.J. Packer, F.O. Zelaya, Nature 351, 467 (1991)

  48. F.B. Laun, T.A. Kuder, W. Semmler, B. Stieltjes, Phys. Rev. Lett. 107, 048102 (2011)

  49. S. Hertel, M. Hunter, P. Galvosas, Phys. Rev. E 87, 030802 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author thanks Prof. Bruce J. Balcom from the University of New Brunswick MRI Research Centre for providing NMR instruments, Drs. Florea Marica and Bryce MacMillan for assistance with instruments, Dr. Karen L. Feilberg for sample selection, and Assoc. Prof. Lars G. Hanson for comments and discussions. The Danish Hydrocarbon Research and Technology Centre is acknowledged for funding.

Author information

Authors and Affiliations

Authors

Contributions

The author conceived the idea, performed the research, and wrote this manuscript.

Corresponding author

Correspondence to Armin Afrough.

Ethics declarations

Research Data

The experimental and numerical data of this study are available in DTU Data at https://doi.org/10.11583/DTU.15164178.v1.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 262 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrough, A. Magnetic resonance free induction decay in geological porous materials. Eur. Phys. J. E 44, 107 (2021). https://doi.org/10.1140/epje/s10189-021-00110-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00110-0

Navigation