Skip to main content
Log in

Cellular automaton modeling of peritectic transformation

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A two-dimensional multiphase cellular automaton (CA) model is proposed for the prediction of growth kinetics and microstructural evolution during peritectic transformation of Fe-C alloys. The proposed model is validated by comparing the simulation results with the experimental measurements and analytical predictions for the growth kinetics of the \( \gamma\) -phase and the concentration distributions. The simulated time evolution of the \( \gamma\) -phase thickness and the concentration distribution in the \( \gamma\) -phase agree well with the experimental data, demonstrating the quantitative capabilities of the proposed model. The influences of the holding temperature and \( \gamma\) -phase thickness on the \( \gamma\) -phase growth behavior are analyzed based on the simulation results. The \( \gamma\) -phase growth velocity is found to decrease with increasing the \( \gamma\) -phase thickness and holding temperature. Simulations are also performed for the microstructural evolution during isothermal peritectic transformation of Fe-C alloys with the primary \( \delta\) -phase being an equiaxed dendrite under different holding temperatures. It is found that the driving force for \( \gamma\) -phase growth increases with decreasing temperature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Griesser, C. Bernhard, R. Dippenaar, Acta Mater. 81, 111 (2014)

    Article  Google Scholar 

  2. Y. Arai, T. Emi, H. Fredriksson, H. Shibata, Metall. Mater. Trans. A 36, 3065 (2005)

    Article  Google Scholar 

  3. D.M. Liu, X.Z. Li, Y.Q. Su, P. Peng, L.S. Luo, J.J. Guo, H.Z. Fu, Acta Mater. 60, 2679 (2012)

    Article  Google Scholar 

  4. A. Löffler, K. Reuther, H. Engelhardt, D.M. Liu, M. Rettenmayr, Acta Mater. 91, 34 (2015)

    Article  Google Scholar 

  5. H.W. Kerr, J. Cisse, G.F. Bolling, Acta Metall. 22, 677 (1974)

    Article  Google Scholar 

  6. D. Phelan, M. Reid, R. Dippenaar, Metall. Mater. Trans. A 37, 985 (2006)

    Article  Google Scholar 

  7. A. Das, I. Manna, S.K. Pabi, Acta Mater. 47, 1379 (1999)

    Article  Google Scholar 

  8. K. Matsuura, Y. Itoh, T. Narita, ISIJ Int. 33, 583 (1993)

    Article  Google Scholar 

  9. K. Matsuura, H. Maruyama, Y. Itoh, M. Kudoh, K. Ishii, ISIJ Int. 35, 183 (1995)

    Article  Google Scholar 

  10. K. Matsuura, M. Kudoh, T. Ohmi, ISIJ Int. 35, 624 (1995)

    Article  Google Scholar 

  11. K. Matsuura, H. Maruyama, M. Kudoh, Y. Itoh, ISIJ Int. 35, 1483 (1995)

    Article  Google Scholar 

  12. H. Shibata, Y. Arai, M. Suzuki, T. Emi, Metall. Mater. Trans. B 31, 981 (2000)

    Article  Google Scholar 

  13. S. Griesser, C. Bernhard, R. Dippenaar, ISIJ Int. 54, 466 (2014)

    Article  Google Scholar 

  14. S. Griesser, In-situ Study of the Influence of Alloying Elements on the Kinetics and Mechanism of the Peritectic Phase Transition in Steel, PhD Thesis (University of Wollongong, Australia, 2013)

  15. H. Fredriksson, T. Nylen, Met. Sci. 16, 283 (1982)

    Article  Google Scholar 

  16. A. Das, I. Manna, S.K. Pabi, Scr. Mater. 36, 867 (1997)

    Article  Google Scholar 

  17. H. Nassar, H. Fredriksson, Metall. Mater. Trans. A 41, 2776 (2010)

    Article  Google Scholar 

  18. S. Pan, M. Zhu, Acta Mater. 146, 63 (2018)

    Article  Google Scholar 

  19. S. Pan, M. Zhu, M. Rettenmayr, Acta Mater. 132, 565 (2017)

    Article  Google Scholar 

  20. J. Kundin, R. Siquieri, H. Emmerich, Phys. D 243, 116 (2013)

    Article  Google Scholar 

  21. M. Ohno, K. Matsuura, Acta Mater. 58, 5749 (2010)

    Article  Google Scholar 

  22. M. Ohno, K. Matsuura, Acta Mater. 58, 6134 (2010)

    Article  Google Scholar 

  23. M. Yamazaki, J. Satoh, K. Ohsasa, K. Matsuura, ISIJ Int. 48, 362 (2008)

    Article  Google Scholar 

  24. B. Su, Z.Q. Han, B.C. Liu, China Foundry 9, 221 (2012)

    Google Scholar 

  25. M.F. Zhu, D.M. Stefanescu, Acta Mater. 55, 1741 (2007)

    Article  Google Scholar 

  26. S.Y. Pan, M.F. Zhu, Acta Mater. 58, 340 (2010)

    Article  Google Scholar 

  27. H. Zhang, Q.Y. Xu, J. Mater. Process. Technol. 238, 132 (2016)

    Article  Google Scholar 

  28. M.F. Zhu, L. Zhang, H.L. Zhao, D.M. Stefanescu, Acta Mater. 84, 413 (2015)

    Article  Google Scholar 

  29. H. Fang, Q.Y. Tang, Q.Y. Zhang, T.F. Gu, M.F. Zhu, Int. J. Heat Mass Transfer 133, 371 (2019)

    Article  Google Scholar 

  30. A. Pineau, G. Guillemot, D. Tourret, A. Karma, Ch.-A. Gandin, Acta Mater. 155, 286 (2015)

    Article  Google Scholar 

  31. H.B. Dong, P.D. Lee, Acta Mater. 53, 659 (2005)

    Article  Google Scholar 

  32. K. Reuther, M. Rettenmayr, Comput. Mater. Sci. 95, 213 (2014)

    Article  Google Scholar 

  33. Q.Y. Zhang, H. Fang, H. Xue, Q.Y. Tang, S.Y. Pan, M. Rettenmayr, M.F. Zhu, Scr. Mater. 151, 28 (2018)

    Article  Google Scholar 

  34. L. Yuan, P.D. Lee, Model. Simul. Mater. Sci. Eng. 18, 1 (2010)

    Article  Google Scholar 

  35. Q.Y. Zhang, H. Fang, H. Xue, S.Y. Pan, M. Rettenmayr, M.F. Zhu, Sci. Rep. 7, 17809 (2017)

    Article  ADS  Google Scholar 

  36. D. An, S.I. Baik, S.Y. Pan, M.F. Zhu, D. Isheim, B.W. Krakauer, D.N. Seidman, Metall. Mater. Trans. A 50, 436 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfang Zhu.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Fang, H., Tang, Q. et al. Cellular automaton modeling of peritectic transformation. Eur. Phys. J. E 43, 17 (2020). https://doi.org/10.1140/epje/i2020-11939-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11939-x

Keywords

Navigation