Skip to main content
Log in

Activated complex theory of nucleation

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A new nucleation theory is presented. This theory is based on the assumption that a critical nucleus of the new phase can be regarded as an activated complex that passes through the top of the energy barrier. In the framework of the proposed approach, an equation in a general form for the nucleation rate is obtained. This equation is used to obtain the calculated data in the case of homogeneous nucleation at the vapor-liquid, liquid-vapor, and liquid-solid phase transitions. A comparison of the calculated data with the available experimental data as well as with the calculated data obtained in the framework of the classical nucleation theory is carried out. From a comparison between the calculated data obtained in the framework of the presented theory and the experimental data for the supercooled water-ice phase transition, the dependence on temperature of the surface tension coefficient between supercooled water and ice is determined.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.V. Slezov, Kinetics of First-order Phase Transitions (Wiley-VCH, Weinheim, 2009)

  2. P.G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, 1996)

  3. D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, 2000)

  4. M.P. Anisimov, Russ. Chem. Rev. 72, 591 (2003)

    Article  ADS  Google Scholar 

  5. J.W.P. Schmelzer (Editor), Nucleation Theory and Applications (Wiley-VCH, Weinheim, 2005)

  6. J.W. Gibbs, The Collected Works, Vol. 1: Thermodynamics (Longmans, Green and Co., New York, 1928)

  7. M. Volmer, A. Weber, Z. Phys. Chem. 119, 277 (1926)

    Google Scholar 

  8. L. Farkas, Z. Phys. Chem. 125, 236 (1927)

    Google Scholar 

  9. R. Kaischew, I.N. Stranski, Z. Phys. Chem. B 26, 317 (1934)

    Google Scholar 

  10. R. Becker, W. Döring, Ann. Phys. 24, 719 (1935)

    Article  Google Scholar 

  11. Ya.B. Zeldovich, Zh. Eksp. Teor. Fiz. 12, 525 (1942)

    Google Scholar 

  12. J. Frenkel, Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946)

  13. B.N. Hale, Phys. Rev. A 33, 4156 (1986)

    Article  ADS  Google Scholar 

  14. D.W. Oxtoby, J. Phys.: Condens. Matter 4, 7627 (1992)

    ADS  Google Scholar 

  15. J. Wölk, R. Strey, C.H. Heath, B.E. Wyslouzil, J. Chem. Phys. 117, 4954 (2002)

    Article  ADS  Google Scholar 

  16. A.B. Nadykto, F. Yu, J. Chem. Phys. 122, 104511 (2005)

    Article  ADS  Google Scholar 

  17. S. Karthika, T.K. Radhakrishnan, P. Kalaichelvi, Cryst. Growth Des. 16, 6663 (2016)

    Article  Google Scholar 

  18. A. Dillmann, G.E.A. Meier, Chem. Phys. Lett. 160, 71 (1989)

    Article  ADS  Google Scholar 

  19. A. Dillmann, G.E.A. Meier, J. Chem. Phys. 94, 3872 (1991)

    Article  ADS  Google Scholar 

  20. A. Laaksonen, I.J. Ford, M. Kulmala, Phys. Rev. E 49, 5517 (1994)

    Article  ADS  Google Scholar 

  21. S.L. Girshick, C.-P. Chiu, J. Chem. Phys. 93, 1273 (1990)

    Article  ADS  Google Scholar 

  22. S.L. Girshick, J. Chem. Phys. 94, 826 (1991)

    Article  ADS  Google Scholar 

  23. V.I. Kalikmanov, M.E.H. van Dongen, Phys. Rev. E 47, 3532 (1993)

    Article  ADS  Google Scholar 

  24. G. Wilemski, J. Chem. Phys. 103, 1119 (1995)

    Article  ADS  Google Scholar 

  25. L. Gránásy, J. Non-Cryst. Solids 162, 301 (1993)

    Article  Google Scholar 

  26. L. Gránásy, I. Egry, L. Ratke, D.M. Herlach, Scr. Metall. Mater. 30, 621 (1994)

    Article  Google Scholar 

  27. L. Gránásy, J. Chem. Phys. 104, 5188 (1996)

    Article  ADS  Google Scholar 

  28. G.K. Schenter, S.M. Kathmann, B.C. Garrett, Phys. Rev. Lett. 82, 3484 (1999)

    Article  ADS  Google Scholar 

  29. D. Reguera, H. Reiss, J. Phys. Chem. B 108, 19831 (2004)

    Article  Google Scholar 

  30. D.H. Rasmussen, J. Cryst. Growth 56, 45 (1982)

    Article  ADS  Google Scholar 

  31. D.H. Rasmussen, M.-T. Liang, E. Esen, M.R. Appleby, Langmuir 8, 1868 (1992)

    Article  Google Scholar 

  32. D.W. Oxtoby, R. Evans, J. Chem. Phys. 89, 7521 (1988)

    Article  ADS  Google Scholar 

  33. X.C. Zeng, D.W. Oxtoby, J. Chem. Phys. 94, 4472 (1991)

    Article  ADS  Google Scholar 

  34. C.K. Bagdassarian, D.W. Oxtoby, J. Chem. Phys. 100, 2139 (1994)

    Article  ADS  Google Scholar 

  35. Y.C. Shen, D.W. Oxtoby, J. Chem. Phys. 105, 6517 (1996)

    Article  ADS  Google Scholar 

  36. S. Ghosh, S.K. Ghosh, J. Chem. Phys. 134, 024502 (2011)

    Article  ADS  Google Scholar 

  37. M. Sekine, K. Yasuoka, T. Kinjo, M. Matsumoto, Fluid Dyn. Res. 40, 597 (2008)

    Article  ADS  Google Scholar 

  38. G. Chkonia, J. Wölk, R. Strey, J. Wedekind, D. Reguera, J. Chem. Phys. 130, 064505 (2009)

    Article  ADS  Google Scholar 

  39. J. Anwar, D. Zahn, Angew. Chem. Int. Ed. 50, 1996 (2011)

    Article  Google Scholar 

  40. K.K. Tanaka, H. Tanaka, T. Yamamoto, K. Kawamura, J. Chem. Phys. 134, 204313 (2011)

    Article  ADS  Google Scholar 

  41. E. Sanz, C. Vega, J.R. Espinosa, R. Caballero-Bernal, J.L.F. Abascal, C. Valeriani, J. Am. Chem. Soc. 135, 15008 (2013)

    Article  Google Scholar 

  42. H. Eyring, J. Chem. Phys. 3, 107 (1935)

    Article  ADS  Google Scholar 

  43. M.G. Evans, M. Polanyi, Trans. Faraday Soc. 31, 875 (1935)

    Article  Google Scholar 

  44. H. Eyring, Chem. Rev. 17, 65 (1935)

    Article  Google Scholar 

  45. S. Glasstone, K.J. Laidler, H. Eyring, The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena (McGraw-Hill, New York, 1941)

  46. R.P. Sear, J. Phys.: Condens. Matter 19, 033101 (2007)

    ADS  Google Scholar 

  47. E. Clouet, in ASM Handbook, Vol. 22A: Fundamentals of Modeling for Metals Processing, edited by D.U. Furrer, S.L. Semiatin (ASM International, Materials Park, 2009) pp. 203--219

  48. Y. Viisanen, R. Strey, J. Chem. Phys. 101, 7835 (1994)

    Article  ADS  Google Scholar 

  49. H. Lihavainen, Y. Viisanen, M. Kulmala, J. Chem. Phys. 114, 10031 (2001)

    Article  ADS  Google Scholar 

  50. V.P. Skripov, Metastable Liquids (Halsted Press, John Wiley & Sons, New York, 1974)

  51. M. Blander, J.L. Katz, AIChE J. 21, 833 (1975)

    Article  Google Scholar 

  52. V.G. Baidakov, Low Temp. Phys. 39, 643 (2013)

    Article  ADS  Google Scholar 

  53. V.G. Baidakov, Explosive Boiling of Superheated Cryogenic Liquids (Wiley-VCH, Weinheim, 2007)

  54. H.R. Pruppacher, J.D. Klett, Microphysics of Clouds and Precipitation, 2nd edition (Kluwer Academic Publishers, Dordrecht, 1997)

  55. D. Turnbull, J.C. Fisher, J. Chem. Phys. 17, 71 (1949)

    Article  ADS  Google Scholar 

  56. L. Ickes, A. Welti, C. Hoose, U. Lohmann, Phys. Chem. Chem. Phys. 17, 5514 (2015)

    Article  Google Scholar 

  57. L. Gránásy, T. Pusztai, P.F. James, J. Chem. Phys. 117, 6157 (2002)

    Article  ADS  Google Scholar 

  58. P. Taborek, Phys. Rev. B 32, 5902 (1985)

    Article  ADS  Google Scholar 

  59. C.L. Yaws, Thermophysical Properties of Chemicals and Hydrocarbons, 2nd edition (Gulf Professional Publishing, Waltham, 2014)

  60. T. Schmeling, R. Strey, Ber. Bunsenges. Phys. Chem. 87, 871 (1983)

    Article  Google Scholar 

  61. A.G.M. Ferreira, L.Q. Lobo, J. Chem. Thermodyn. 41, 809 (2009)

    Article  Google Scholar 

  62. N.B. Vargaftik, Reference Book on Thermophysical Properties of Gases and Liquids, 2nd edition (Nauka, Moscow, 1972) in Russian

  63. O. Sifner, J. Klomfar, J. Phys. Chem. Ref. Data 23, 63 (1994)

    Article  ADS  Google Scholar 

  64. J. Wölk, R. Strey, J. Phys. Chem. B 105, 11683 (2001)

    Article  Google Scholar 

  65. D.R. Lide (Editor), CRC Handbook of Chemistry and Physics, 90th edition (CRC Press, Boca Raton, 2009)

  66. D.M. Murphy, T. Koop, Q. J. R. Meteorol. Soc. 131, 1539 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy A. Vlasov.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, V.A. Activated complex theory of nucleation. Eur. Phys. J. E 42, 36 (2019). https://doi.org/10.1140/epje/i2019-11797-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11797-7

Keywords

Navigation