Skip to main content
Log in

On dewetting of thin films due to crystallization (crystallization dewetting)

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Drying and crystallization of a thin liquid film of an ionic or a similar solution can cause dewetting in the resulting thin solid film. This paper aims at investigating this type of dewetting, herein termed “crystallization dewetting”, using PbI2 dissolved in organic solvents as the model solution. PbI2 solid films are usually used in X-ray detection and lead halide perovskite solar cells. In this work, PbI2 films are fabricated using spin coating and the effect of major parameters influencing the crystallization dewetting, including the type of the solvent, solution concentration, drying temperature, spin speed, as well as imposed vibration on the substrate are studied on dewetting, surface profile and coverage, using confocal scanning laser microscopy. Simplified hydrodynamic governing equations of crystallization in thin films are presented and using a mathematical representation of the process, it is phenomenologically demonstrated that crystallization dewetting occurs due to the absorption and consumption of the solution surrounding a growing crystal. Among the results, it is found that a low spin speed (high thickness), a high solution concentration and a low drying temperature promote crystal growth, and therefore crystallization dewetting. It is also shown that imposed vibration on the substrate can affect the crystal size and crystallization dewetting.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Jacobs, R. Seemann, S. Herminghaus, Stability and dewetting of thin liquid film, arXiv:0805.4336 [cond-mat.soft] (2008)

  2. B. Saramago, Curr. Opin. Colloid Interface Sci. 15, 330 (2010)

    Article  Google Scholar 

  3. L. Xue, Y. Han, Progr. Mater. Sci. 57, 947 (2012)

    Article  Google Scholar 

  4. C.V. Thompson, Annu. Rev. Mater. Res. 42, 399 (2012)

    Article  ADS  Google Scholar 

  5. M. Ramanathan, S.B. Darling, Progr. Polymer Sci. 36, 793 (2011)

    Article  Google Scholar 

  6. M. Ma, Z. He, J. Yang, F. Chen, K. Wang, O. Zhang, H. Deng, Q. Fu, Langmuir 27, 13072 (2011)

    Article  Google Scholar 

  7. G. Reiter, G. Castelein, P. Hoerner, G. Riess, J.-U. Sommer, G. Floudas, Eur. Phys. J. E 2, 319 (2000)

    Article  Google Scholar 

  8. G. Reiter, J-U. Sommer, J. Chem. Phys. 112, 4376 (2000)

    Article  ADS  Google Scholar 

  9. M.V. Massa, K. Dalnoki-Veress, J.A. Forrest, Eur. Phys. J. E 11, 191 (2003)

    Article  Google Scholar 

  10. K.L. Beers, J.F. Douglas, E.J. Amis, A. Karim, Langmuir 19, 3935 (2003)

    Article  Google Scholar 

  11. M. Asada, N. Jiang, L. Sendogdular, J. Sokolov, M.K. Endoh, T. Koga, M. Fukuto, L. Yang, B. Akgun, M. Dimitrioug, S. Satijag, Soft Matter 10, 6392 (2014)

    Article  Google Scholar 

  12. F. Zhang, G. Baralia, A. Boborodea, C. Bailly, B. Nysten, A.M. Jonas, Langmuir 21, 7427 (2005)

    Article  Google Scholar 

  13. B.C. Okerberg, B.C. Berry, T.R. Garvey, J.F. Douglas, A. Karim, C.L. Soles, Soft Matter 5, 562 (2009)

    Article  ADS  Google Scholar 

  14. Z.H. Du, T.S. Zhang, M.M. Zhu, J. Ma, J. Mater. Res. 24, 1576 (2009)

    Article  ADS  Google Scholar 

  15. A. Aliane, M. Benwadih, B. Bouthinon, R. Coppard, F. Domingues-Dos Santos, A. Daami, Organic Electron. 25, 92 (2015)

    Article  Google Scholar 

  16. J. López-García, J. Montero, C. Maffiotte, C. Guillén, J. Herrero, J. Alloys Comp. 648, 104 (2015)

    Article  Google Scholar 

  17. R. Svoboda, J. Gutwirth, J. Málek, T. Wágner, Thin Solid Films 571, 121 (2014)

    Article  ADS  Google Scholar 

  18. M. Mohri, M. Nili-Ahmadabadi, V.S.K. Chakravadhanula, Mater. Charact. 103, 75 (2015)

    Article  Google Scholar 

  19. A. Fraczyk, Techn. Sci. 14, 93 (2011)

    Google Scholar 

  20. M.K. Chaudhury, A. Chakrabarti, A. Ghatak, Eur. Phys. J. E 38, 82 (2015)

    Article  Google Scholar 

  21. F. Zabihi, M. Eslamian, J. Coat. Technol. Res. 12, 711 (2015)

    Article  Google Scholar 

  22. M. Habibi, M. Eslamian, F. Soltani-Kurdshuli, F. Zabihi, J. Coat. Technol. Res. 13, 211 (2016)

    Article  Google Scholar 

  23. F. Zabihi, M. Eslamian, J. Coat. Technol. Res. 12, 489 (2015)

    Article  Google Scholar 

  24. F. Zabihi, M.R. Ahmadian-Yazdi, M. Eslamian, Nanoscale Res. Lett. 11, 71 (2016)

    Article  ADS  Google Scholar 

  25. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Nature 499, 316 (2013)

    Article  ADS  Google Scholar 

  26. F. Huang, Y. Dkhissi, W. Huang, M. Xiao, I. Benesperi, S. Rubanov, Y. Zhu, X. Lin, L. Jiang, Y. Zhou, A. Gray-Weale, J. Etheridge, C.R. McNeill, R.A. Caruso, U. Bach, L. Spiccia, Y.-B. Cheng, Nano Energy 10, 10 (2014)

    Article  Google Scholar 

  27. S. Razza, F. Di Giacomo, F. Matteocci, L. Cinà, A.L. Palma, S. Casaluci, P. Cameron, A. D’Epifanio, S. Licoccia, A. Reale, T.M. Brown, A. Di Carlo, J. Power Sources 277, 286 (2015)

    Article  ADS  Google Scholar 

  28. X. Zhu, H. Sun, D. Yang, J. Yang, X. Li, X. Gao, J. Mater. Sci.: Mater. Electron. 25, 3337 (2014)

    Google Scholar 

  29. H. Sun, X. Zhu, D. Yang, J. Yang, X. Gao, X. Li, J. Crystal Growth 405, 29 (2014)

    Article  ADS  Google Scholar 

  30. Y. He, S. Zhu, B. Zhao, Y. Jin, Z. He, B. Chen, J. Crystal Growth 300, 448 (2007)

    Article  ADS  Google Scholar 

  31. F. Zabihi, Y. Xie, S. Gao, M. Eslamian, Appl. Surf. Sci. 338, 163 (2015)

    Article  ADS  Google Scholar 

  32. Y. Xie, S. Gao, M. Eslamian, Coatings 5, 488 (2015)

    Article  Google Scholar 

  33. M. Shkir, H. Abbas, Z.R. Siddhartha Khan, J. Phys. Chem. Solids 73, 1309 (2012)

    Article  ADS  Google Scholar 

  34. M. Eslamian, F. Zabihi, Nanoscale Res. Lett. 10, 462 (2015)

    Article  ADS  Google Scholar 

  35. Q. Wang, M. Eslamian, Ultrasonics 67, 55 (2016)

    Article  Google Scholar 

  36. A.V. Oppenheim, R.W. Schafer, J.R. Buck, Discrete-time signal processing (Prentice Hall, 1999) pp. 468--471

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Eslamian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibi, M., Rahimzadeh, A. & Eslamian, M. On dewetting of thin films due to crystallization (crystallization dewetting). Eur. Phys. J. E 39, 30 (2016). https://doi.org/10.1140/epje/i2016-16030-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16030-9

Keywords

Navigation