Skip to main content
Log in

The importance of chemical potential in the determination of water slip in nanochannels

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We investigate the slip properties of water confined in graphite-like nanochannels by non-equilibrium molecular dynamics simulations, with the aim of identifying and analyze separately the influence of different physical quantities on the slip length. In a system under confinement but connected to a reservoir of fluid, the chemical potential is the natural control parameter: we show that two nanochannels characterized by the same macroscopic contact angle --but a different microscopic surface potential-- do not exhibit the same slip length unless the chemical potential of water in the two channels is matched. Some methodological issues related to the preparation of samples for the comparative analysis in confined geometries are also discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lamb, Hydrodynamics, 6th edition (Dover, New York, 1945)

  2. H. Stone, A. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004)

    Article  ADS  Google Scholar 

  3. T. Squires, S. Quake, Rev. Mod. Phys. 77, 977 (2005)

    Article  ADS  Google Scholar 

  4. M. Sbragaglia, S. Succi, Phys. Fluids 17, 093602 (2005)

    Article  ADS  Google Scholar 

  5. R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, F. Toschi, Europhys. Lett. 74, 651 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, F. Toschi, Phys. Rev. E 74, 021509 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  7. P. Tabeling, Lab on Chip 9, 2428 (2009)

    Article  Google Scholar 

  8. E. Lauga, M.P. Brenner, H.A. Stone, Microfluidics: The No-Slip Boundary Condition (Springer, Berlin, 2007) chapt. 19

  9. L. Bocquet, E. Charlaix, Chem. Soc. Rev. 39, 1073 (2010)

    Article  Google Scholar 

  10. J.C. Eijkel, A. Van Den Berg, Microfluid. Nanofluid. 1, 249 (2005)

    Article  Google Scholar 

  11. R.B. Schoch, J. Han, P. Renaud, Rev. Mod. Phys. 80, 839 (2008)

    Article  ADS  Google Scholar 

  12. L. Bocquet, J.L. Barrat, Soft Matter 3, 685 (2007)

    Article  ADS  Google Scholar 

  13. D.M. Huang, C. Sendner, D. Horinek, R.R. Netz, L. Bocquet, Phys. Rev. Lett. 101, 1 (2008)

    Google Scholar 

  14. T.A. Hoa, D.V. Papavassilioua, L.L. Leeb, A. Striolo Proc. Natl. Acad. Sci. U.S.A. 108161702011

    Google Scholar 

  15. A. Martini, H.Y. Hsu, N. Patankar, S. Lichter, Phys. Rev. Lett. 100, 1 (2008)

    Google Scholar 

  16. N.V. Priezjev, S.M. Troian, J. Fluid Mech. 554, 25 (2006)

    Article  MATH  ADS  Google Scholar 

  17. P.G. de Gennes, F. Brochard-Wyart, D. Quèrè, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2003)

  18. L. Bocquet, J.L. Barrat, Phys. Rev. E 49, 3079 (1994)

    Article  ADS  Google Scholar 

  19. J. Petravic, P. Harrowell, J. Chem. Phys. 127, 174706 (2007)

    Article  ADS  Google Scholar 

  20. J. Hansen, B.D. Todd, P.J. Daivis, Phys. Rev. E 84, 1 (2011)

    Google Scholar 

  21. M. Chinappi, Applications of All-Atom Molecular Dynamics to Nanofluidics (InTech, Rijeka, Croatia, 2012) Chapt. 15

  22. A.A. Pahlavan, J.B. Freund, Phys. Rev. E 83, 021602 (2011)

    Article  ADS  Google Scholar 

  23. T.A. Ho, D. Argyris, D.V. Papavassiliou, A. Striolo, Mol. Simul. 37, 172 (2011)

    Article  Google Scholar 

  24. B.F. Qiao, M. Sega, C. Holm, Phys. Chem. Chem. Phys. 14, 11425 (2012)

    Article  Google Scholar 

  25. P.A. Thompson, S.M. Troian, Nature 389, 360 (1997)

    Article  ADS  Google Scholar 

  26. N.V. Priezjev, J. Chem. Phys. 127, 144708 (2007)

    Article  ADS  Google Scholar 

  27. M. Sega, M. Sbragaglia, L. Biferale, S. Succi, Soft Matter 9, 8526 (2013)

    Article  ADS  Google Scholar 

  28. C. Sendner, D. Horinek, L. Bocquet, R.R. Netz, Langmuir 25, 10768 (2009)

    Article  Google Scholar 

  29. J.L. Barrat, L. Bocquet, Faraday Discuss. 112, 119 (1999)

    Article  ADS  Google Scholar 

  30. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008)

    Article  Google Scholar 

  31. H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987)

    Article  Google Scholar 

  32. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103, 8577 (1995)

    Article  ADS  Google Scholar 

  33. I.C. Yeh, M.L. Berkowitz, J. Chem. Phys. 111, 3155 (1999)

    Article  ADS  Google Scholar 

  34. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford Science Publications, 1st edition (Clarendon Press, Oxford, 1987).

  35. S. Miyamoto, P.A. Kollman, J. Comput. Chem. 13, 952 (1992)

    Article  Google Scholar 

  36. W.F. van Gunsteren, S.R. Billeter, A.A. Eising, P.H. Hunenberger, P. Kruger, A.E. Mark, W.R.P. Scott, I.G. Tironi, Biomolecular Simulation: The GROMOS96 Manual and User Guide (vdf Hochschulverlag AG an der ETH Zurich and BIOMOS b.v., Zurich, Groningen, 1996)

  37. T. Werder, J. Walther, R. Jaffe, T. Halicioglu, P. Koumoutsakos, J. Phys. Chem. B 107, 1345 (2003)

    Article  Google Scholar 

  38. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Dover, New York, 2003)

  39. B. Widom, J. Chem. Phys. 39, 2802 (1963)

    Article  ADS  Google Scholar 

  40. B. Widom, J. Stat. Phys. 19, 563 (1978)

    Article  ADS  Google Scholar 

  41. G. Job, F. Herrmann, Eur. J. Phys. 27, 353 (2006)

    Article  Google Scholar 

  42. L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edition (Pergamon Press, Oxford, 1987)

  43. M. Chinappi, C. Casciola, Phys. Fluids 22, 042003 (2010)

    Article  ADS  Google Scholar 

  44. N.V. Priezjev, J. Chem. Phys 135, 204704 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sega.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sega, M., Sbragaglia, M., Biferale, L. et al. The importance of chemical potential in the determination of water slip in nanochannels. Eur. Phys. J. E 38, 127 (2015). https://doi.org/10.1140/epje/i2015-15127-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15127-y

Keywords

Navigation