Skip to main content
Log in

Clustering and segregation in driven granular fluids

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

In microgravity, the successive inelastic collisions in a granular gas can lead to a dynamical clustering of the particles. This transition depends on the filling fraction of the system, the restitution of the used materials and on the size of the particles. We report simulations of driven bi-disperse gas made of small and large spheres. The size as well as the mass difference imply a strong modification in the kinematic chain of collisions and therefore alter significantly the formation of a cluster. Moreover, the different dynamical behaviors can also lead to a demixing of the system, adding a few small particles in a gas of large ones can lead to a partial clustering of the taller type. We realized a detailed phase diagram recovering the encountered regimes and developed a theoretical model predicting the possibility of dynamical clustering in binary systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. de Gennes, Rev. Mod. Phys. 71, 374 (1999).

    Article  Google Scholar 

  2. I.S. Aranson, L.S. Tsmiring, Rev. Mod. Phys. 78, 641 (2006).

    Article  ADS  Google Scholar 

  3. J.B. Knight, C.G. Fandrich, Chun Ning Lau, H.M. Jaeger, S.R. Nagel, Phys. Rev. E 51, 3957 (1995).

    Article  ADS  Google Scholar 

  4. G. Lumay, N. Vandewalle, Phys. Rev. Lett. 95, 028002 (2005).

    Article  ADS  Google Scholar 

  5. F. Ludewig, N. Vandewalle, S. Dorbolo, Granular Matter 8, 87 (2006).

    Article  MATH  Google Scholar 

  6. F. Vivanco, S. Rica, F. Melo, Granular Matter 14, 563 (2012).

    Article  Google Scholar 

  7. A. Garcimartín, I. Zuriguel, L.A. Pugnaloni, A. Janda, Phys. Rev. E 82, 031306 (2010).

    Article  ADS  Google Scholar 

  8. C. Lozano, G. Lumay, I. Zuriguel, R.C. Hidalgo, A. Garcimartín, Phys. Rev. Lett. 109, 68001 (2012).

    Article  ADS  Google Scholar 

  9. K. Hutter, K.R. Rajagopal, Continuum Mech. Thermodyn. 6, 81 (1994).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. F. Boyer, E. Guazzelli, O. Pouliquen, Phys. Rev. Lett. 107, 188301 (2011).

    Article  ADS  Google Scholar 

  11. I. Goldhirsch, Annu. Rev. Fluid Mech. 35, 267 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  12. T. Pöschel, N.V. Brilliantov, Granular Gas Dynamics, Vol. 624 (Springer, 2003).

  13. F. Spahn, J. Schmidt, M. Sremcevic, Lect. Notes Phys. 557, 507 (2000).

    Article  ADS  Google Scholar 

  14. I. Goldhirsch, G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993).

    Article  ADS  Google Scholar 

  15. J.S. Olafsen, J.S. Urbach, Phys. Rev. Lett. 81, 4369 (1998).

    Article  ADS  Google Scholar 

  16. J. Schockmal, E. Mersch, N. Vandewalle, G. Lumay, Phys. Rev. E 87, 062201 (2013).

    Article  ADS  Google Scholar 

  17. S. Merminod, M. Berhanu, E. Falcon, EPL 106, 44005 (2014).

    Article  ADS  Google Scholar 

  18. E. Falcon, S. Fauve, C. Laroche, Eur. Phys. J. B 9, 183 (1999).

    Article  ADS  Google Scholar 

  19. E. Opsomer, F. Ludewig, N. Vandewalle, Phys. Rev. E 84, 051306 (2011).

    Article  ADS  Google Scholar 

  20. K. Harth, U. Kornek, T. Trittel, U. Strachauer, S. Höme, K. Will, R. Stannarius, Phys. Rev. Lett. 110, 144102 (2013).

    Article  ADS  Google Scholar 

  21. S.E. Episov, T. Pöschel, J. Stat. Phys. 86, 1385 (1997).

    Article  ADS  Google Scholar 

  22. T.P.C. Van Noije, M.H. Ernst, Granular Matter 1, 2 (1998).

    Google Scholar 

  23. E.L. Grossman, T. Zhou, E. BenNaim, Phys. Rev. Lett. 55, 4200 (1997).

    ADS  Google Scholar 

  24. J.S. Olafsen, J.S. Urbach, Phys. Rev. E 60, R2468 (1999).

    Article  ADS  Google Scholar 

  25. A. Kudrolli, J. Henry, Phys. Rev. E 62, R1489 (2000).

    Article  ADS  Google Scholar 

  26. P. Jop, Y. Forterre, O. Pouliquen, Nature 441, 04801 (1999).

    Google Scholar 

  27. J. Eggers, Phys. Rev. Lett. 83, 5322 (1999).

    Article  ADS  Google Scholar 

  28. E. Falcon, R. Wunenburger, P. Evesque, S. Fauve, C. Chabot, Y. Garrabos, D. Beysens, Phys. Rev. Lett. 83, 2, 440 (1999).

    Article  Google Scholar 

  29. S. Aumaitre, J. Farago, S. Fauve, S. Mc Namara, Eur. Phys. J. B 42, 255 (2004).

    Article  ADS  Google Scholar 

  30. E. Opsomer, F. Ludewig, N. Vandewalle, EPL 99, 40001 (2012).

    Article  ADS  Google Scholar 

  31. M. E. Möbius, B.E. Lauderdale, S.R. Nagel, H.M. Jaeger, Nature 414, 6861 (2001).

    Article  Google Scholar 

  32. F. Ludewig, N. Vandewalle, Eur. Phys. J. E 18, 4 (2005).

    Article  Google Scholar 

  33. A. Kudrolli, Rep. Prog. Phys. 67, 209 (2004).

    Article  ADS  Google Scholar 

  34. C. Güttler, I. von Borstel, R. Schräpler, J. Blum Phys. Rev. E 87, 044201 (2013).

    Article  ADS  Google Scholar 

  35. J.M. Ottino, D.V. Khakhar, Annu. Rev. Fluid Mech. 32, 55 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  36. European Space Agency's SpaceGrains project, URL: http://www.spacegrains.org/.

  37. T. Pöschel, T. Schwager, Computational Granular Dynamics (Springer-Verlag, Berlin, Heidelberg, 2005).

  38. S. Luding, Granular Matter 10, 235 (2008).

    Article  MATH  Google Scholar 

  39. N. Taberlet, PhD Thesis, Université de Rennes I (2005).

  40. C.R.K. Windows-Yule, T. Weinhart, D.J. Parker, A.R. Thornton, Phys. Rev. Lett. 112, 098001 (2014).

    Article  ADS  Google Scholar 

  41. http://www.planetaryresources.com.

  42. C.C. Maaß, N. Insert, G. Maret, C.M. Aegerter, Phys. Rev. Lett. 100, 248001 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Opsomer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opsomer, E., Vandewalle, N., Noirhomme, M. et al. Clustering and segregation in driven granular fluids. Eur. Phys. J. E 37, 115 (2014). https://doi.org/10.1140/epje/i2014-14115-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14115-1

Keywords

Navigation