Skip to main content
Log in

Dispersions of multi-wall carbon nanotubes in ferroelectric liquid crystals

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The electro-optic and dielectric properties of ferroelectric liquid crystal-multi-wall carbon nanotube dispersions were investigated with respect to temperature and nanotube concentration. The main physical properties, such as tilt angle, spontaneous polarization, response time, viscosity, and Goldstone-mode relaxation strength and frequency were studied. While all dispersions exhibit the expected temperature dependencies of their physical properties, their dependence on nanotube concentration is still a controversial discussion in literature, with several contradicting reports. For increasing nanotube concentration we observed a decrease in tilt angle, but an increase in spontaneous polarisation, the latter explaining the enhancement of the bilinear coupling coefficient, and the dielectric relaxation strength. Despite the increase in polarization, the electro-optic response times slow down, which suggests an increase of rotational viscosity along the tilt cone. It is anticipated that the latter also accounts for the observed decrease of the Goldstone-mode relaxation frequency for increasing nanotube concentration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 2001)

  2. P.J. Collings, M. Hird, Introduction to Liquid Crystals: Chemistry and Physics (Taylor & Francis, London, 1997)

  3. S. Chandrasekhar, Liquid Crystals, 2nd ed. (Cambridge University Press, Cambridge, 1992)

  4. B. Meyer, L. Liebert, L. Strzelecki, P. Keller, J. Phys. (Paris) Lett. 36, L69 (1975)

    Article  Google Scholar 

  5. S.T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals (Wiley-VCH, Weinheim, 1999)

  6. N.A. Clark, S.T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980)

    Article  ADS  Google Scholar 

  7. M. Lynch, D. Patrick, Nano Lett. 2, 1197 (2002)

    Article  ADS  Google Scholar 

  8. I. Dierking, G. Scalia, P. Morales, D. Leclere, Adv. Mater. 16, 865 (2003)

    Article  Google Scholar 

  9. S. Kumar, H.K. Bisoyi, Angew. Chem. Int. Ed. 46, 1501 (2007)

    Article  Google Scholar 

  10. H.K. Bisoyi, S. Kumar, J. Mater. Chem. 18, 3032 (2008)

    Article  Google Scholar 

  11. H.K. Bisoyi, S. Kumar, J. Ind. Inst. Sci. 89, 101 (2009)

    Google Scholar 

  12. J.P.F. Lagerwall, G. Scalia, M. Haluska, U. Dettlaff-Weglikowska, F. Giesselmann, S. Roth, Phys. Status. Solidi B 243, 3046 (2006)

    Article  ADS  Google Scholar 

  13. J. Lagerwall, G. Scalia, M. Haluska, U. Dettlaff-Weglikowska, S. Roth, F. Giesselmann, Adv. Mater. 19, 359 (2007)

    Article  Google Scholar 

  14. W. Jiang, B. Yu, W. Liu, J. Hao, Langmuir 23, 8549 (2007)

    Article  Google Scholar 

  15. G. Scalia, C. von Bühler, C. Hägele, S. Roth, F. Giesselmann, J.P.F. Lagerwall, Soft Matter 4, 570 (2008)

    Article  ADS  Google Scholar 

  16. V. Weiss, R. Thiruvengadathan, O. Regev, Langmuir 22, 854 (2006)

    Article  Google Scholar 

  17. S. Badaire, C. Zakri, M. Maugey, A. Derré, J.N. Barisci, G. Wallace, P. Poulin, Adv. Mater. 13, 1673 (2005)

    Article  Google Scholar 

  18. W. Song, A.H. Windle, Macromolecules 38, 6181 (2005)

    Article  ADS  Google Scholar 

  19. J.P.F. Lagerwall, G. Scalia, J. Mater. Chem. 18, 2890 (2008)

    Article  Google Scholar 

  20. I. Dierking, G. Scalia, P. Morales, J. Appl. Phys. 97, 044309 (2005)

    Article  ADS  Google Scholar 

  21. I. Dierking, K. Casson, R. Hampson, Jpn. J. Appl. Phys. 47, 6390 (2008)

    Article  ADS  Google Scholar 

  22. I. Dierking, S.E. San, Appl. Phys. Lett. 87, 233507 (2005)

    Article  ADS  Google Scholar 

  23. F.V. Podgornov, A.M. Suvorova, A.V. Lapanik, W. Haase, Chem. Phys. Lett. 479, 206 (2009)

    Article  ADS  Google Scholar 

  24. J. Prakash, A. Chaudhary, D.S. Mehta, A.M. Biradar, Phys. Rev. E 80, 012701 (2009)

    Article  ADS  Google Scholar 

  25. P. Arora, A. Mikulko, F. Podgornov, W. Haase, Mol. Cryst. Liq. Cryst. 502, 1 (2009)

    Article  Google Scholar 

  26. R.K. Shukla, K.K. Raina, V. Hamplová, M. Kašpar, A. Bubnov, Phase Trans. 84, 850 (2011)

    Article  Google Scholar 

  27. S. Ghosh, P. Nayek, S.K. Roy, R. Gangopadhyay, M.R. Molla, T.P. Majumder, Eur. Phys. J. E 34, 35 (2011)

    Article  Google Scholar 

  28. S.K. Gupta, A. Kumar, A.K. Srivistava, R. Manohar, J. Non-Cryst. Solids 357, 1822 (2011)

    Article  ADS  Google Scholar 

  29. P. Malik, A. Chaudhary, R. Mehra, K.K. Raina, J. Mol. Liq. 165, 7 (2012)

    Article  Google Scholar 

  30. V.N. Vijayakumar, M.L.N.M. Mohan, J. Disp. Sci. Tech. 33, 111 (2012)

    Article  Google Scholar 

  31. K. Miyasato, S. Abe, H. Takezoe, A. Fukuda, E. Kuze, Jpn. J. Appl. Phys. 22, L661 (1983)

    Article  ADS  Google Scholar 

  32. A.M. Rao, E. Ritcher, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, Science 275, 187 (1997)

    Article  Google Scholar 

  33. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito, Carbon 40, 2043 (2002)

    Article  Google Scholar 

  34. B. Zekš, Mol. Cryst. Liq. Cryst. 114, 259 (1984)

    Article  Google Scholar 

  35. T. Carlsson, B. Zekš, A. Levstik, C. Filipic, I. Levstik, R. Blinc, Phys. Rev. A 36, 1484 (1987)

    Article  ADS  Google Scholar 

  36. F. Giesselmann, A. Heimann, P. Zugenmaier, Ferroelectrics 200, 237 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dierking.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakemseva, M., Dierking, I., Kapernaum, N. et al. Dispersions of multi-wall carbon nanotubes in ferroelectric liquid crystals. Eur. Phys. J. E 37, 7 (2014). https://doi.org/10.1140/epje/i2014-14007-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14007-4

Keywords

Navigation