Skip to main content
Log in

Yield stresses and flow curves in metallic glass formers and granular systems

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We discuss the concept of a glass transition line in the temperature-shear-stress plane in the context of recent simulation data for a metallic melt and dense-packed granular systems. Analyzing these data within a schematic model of the mode-coupling theory for dense glass formers under shear, values for the critical dynamic yield stress (the stress resulting in the limit of arbitrarily slow shear, at the glass transition) are estimated. We discuss two possible scenarios, that of a continuous rise in the dynamic yield stress at the transition, and that of a discontinuous transition, and discuss the data range that needs to be covered to decide between the two cases. A connection is made to the two commonly drawn versions of the jamming diagram, one convex and one concave regarding to the shape of the solid region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, 1998).

  2. P. Sollich, F. Lequeux, P. Hébraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997).

    Article  ADS  Google Scholar 

  3. M. Fuchs, M.E. Cates, Phys. Rev. Lett. 89, 248304 (2002).

    Article  ADS  Google Scholar 

  4. P. Olsson, S. Teitel, Phys. Rev. Lett. 99, 178001 (2007).

    Article  ADS  Google Scholar 

  5. P. Olsson, S. Teitel, Phys. Rev. E 83, 030302(R) (2011).

    Article  ADS  Google Scholar 

  6. P. Guan, M. Chen, T. Egami, Phys. Rev. Lett. 104, 205701 (2010).

    Article  ADS  Google Scholar 

  7. M. Fuchs, M. Ballauff, J. Chem. Phys. 122, 094707 (2005).

    Article  ADS  Google Scholar 

  8. J.J. Crassous, M. Siebenbürger, M. Ballauff, M. Drechsler, O. Henrich, M. Fuchs, J. Chem. Phys. 125, 204906 (2006).

    Article  ADS  Google Scholar 

  9. J.J. Crassous, M. Siebenbürger, M. Ballauff, M. Drechsler, D. Hajnal, O. Henrich, M. Fuchs, J. Chem. Phys. 128, 204902 (2008).

    Article  ADS  Google Scholar 

  10. M. Siebenbürger, M. Fuchs, H. Winter, M. Ballauff, J. Rheol. 53, 707 (2009).

    Article  ADS  Google Scholar 

  11. T.K. Haxton, A.J. Liu, Phys. Rev. Lett. 99, 195701 (2007).

    Article  ADS  Google Scholar 

  12. A.J. Liu, S.R. Nagel, Nature 396, 21 (1998).

    Article  ADS  Google Scholar 

  13. C.S. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Phys. Rev. E 68, 011306 (2003).

    Article  ADS  Google Scholar 

  14. J.M. Brader, Th. Voigtmann, M. Fuchs, R.G. Larson, M.E. Cates, Proc. Natl. Acad. Sci. U.S.A. 106, 15186 (2009).

    Article  ADS  Google Scholar 

  15. M. Fuchs, M.E. Cates, J. Rheol. 53, 957 (2009).

    Article  ADS  Google Scholar 

  16. J.M. Brader, Th. Voigtmann, M.E. Cates, M. Fuchs, Phys. Rev. Lett. 98, 058301 (2007).

    Article  ADS  Google Scholar 

  17. J.M. Brader, M.E. Cates, M. Fuchs, Phys. Rev. Lett. 101, 138301 (2008).

    Article  ADS  Google Scholar 

  18. D.J. Evans, G.P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, 2nd edn. (Cambridge University Press, 2008).

  19. S.H. Chong, B. Kim, Phys. Rev. E 79, 021203 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  20. F. Varnik, O. Henrich, Phys. Rev. B 73, 174209 (2006).

    Article  ADS  Google Scholar 

  21. J. Zausch, J. Horbach, M. Laurati, S. Egelhaaf, J.M. Brader, Th. Voigtmann, M. Fuchs, J. Phys.: Condens. Matter 20, 404210 (2008).

    Article  Google Scholar 

  22. W. Götze, Complex Dynamics of Glass-Forming Liquids (Oxford University Press, 2009).

  23. O. Henrich, F. Varnik, M. Fuchs, J. Phys.: Condens. Matter 17, S3625 (2005).

    Article  ADS  Google Scholar 

  24. D. Hajnal, M. Fuchs, Eur. Phys. J. E 28, 125 (2009).

    Article  Google Scholar 

  25. D.B. Miracle, D.V. Louzguine-Luzgin, L.V. Louzguina-Luzgina, A. Inoue, Int. Mater. Rev. 55, 218 (2010).

    Article  Google Scholar 

  26. O. Henrich, F. Weysser, M.E. Cates, M. Fuchs, Philos. Trans. R. Soc. A 367, 5033 (2009).

    Article  ADS  MATH  Google Scholar 

  27. J. Chattoraj, C. Caroli, A. Lemaître, Phys. Rev. Lett. 105, 266001 (2010).

    Article  ADS  Google Scholar 

  28. L. Berthier, J.L. Barrat, J. Chem. Phys. 116, 6228 (2002).

    Article  ADS  Google Scholar 

  29. L. Berthier, J.L. Barrat, J. Kurchan, Phys. Rev. E 61, 5464 (2000).

    Article  ADS  Google Scholar 

  30. R. Besseling, E.R. Weeks, A.B. Schofield, W.C.K. Poon, Phys. Rev. Lett. 99, 028301 (2007).

    Article  ADS  Google Scholar 

  31. M. Fuchs, M.E. Cates, Faraday Discuss. 123, 267 (2003).

    Article  ADS  Google Scholar 

  32. F. Varnik, L. Bocquet, J.L. Barrat, J. Chem. Phys. 120, 2788 (2004).

    Article  ADS  Google Scholar 

  33. C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55, 4067 (2007).

    Article  Google Scholar 

  34. Y. Shi, M.B. Katz, H. Li, M.L. Falk, Phys. Rev. Lett. 98, 185505 (2007).

    Article  ADS  Google Scholar 

  35. R. Besseling, L. Isa, P. Ballesta, G. Petekidis, M.E. Cates, W.C.K. Poon, Phys. Rev. Lett. 105, 268301 (2010).

    Article  ADS  Google Scholar 

  36. D. Fenistein, M. van Hecke, Nature 425, 256 (2003).

    Article  ADS  Google Scholar 

  37. T. Divoux, D. Tamarii, C. Barentin, S. Manneville, Phys. Rev. Lett. 104, 208301 (2010).

    Article  ADS  Google Scholar 

  38. M.L. Manning, J.S. Langer, J.M. Carlson, Phys. Rev. E 76, 056106 (2007).

    Article  ADS  Google Scholar 

  39. S.M. Fielding, M.E. Cates, P. Sollich, Soft Matter 5, 2378 (2009).

    Article  ADS  Google Scholar 

  40. G. Ovarlez, S. Rodts, X. Chateau, P. Coussot, Rheol. Acta 48, 831 (2009).

    Article  Google Scholar 

  41. M. Fuchs, M. Ballauff, Coll. Surf. A 270--271, 232 (2005).

    Article  Google Scholar 

  42. F.A. Lindemann, Phys. Z. 11, 609 (1910).

    MATH  Google Scholar 

  43. C. Mayer, E. Zaccarelli, E. Stiakakis, C.N. Likos, F. Sciortino, A. Munam, M. Gauthier, N. Hadjichristidis, H. Iatrou, P. Tartaglia et al., Nat. Mater. 7, 780 (2008).

    Article  ADS  Google Scholar 

  44. K.N. Pham, G. Petekidis, D. Vlassopoulos, S.U. Egelhaaf, P.N. Pusey, W.C.K. Poon, Europhys. Lett. 75, 624 (2006).

    Article  ADS  Google Scholar 

  45. J.L. Barrat, L. Berthier, Phys. Rev. E 63, 012503 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. Voigtmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voigtmann, T. Yield stresses and flow curves in metallic glass formers and granular systems. Eur. Phys. J. E 34, 106 (2011). https://doi.org/10.1140/epje/i2011-11106-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11106-8

Keywords

Navigation