Skip to main content
Log in

Secondary structure formation of homopolymeric single-stranded nucleic acids including force and loop entropy: Implications for DNA hybridization

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Loops are essential secondary structure elements in folded DNA and RNA molecules and proliferate close to the melting transition. Using a theory for nucleic acid secondary structures that accounts for the logarithmic entropy —c ln m for a loop of length m, we study homopolymeric single-stranded nucleic acid chains under external force and varying temperature. In the thermodynamic limit of a long strand, the chain displays a phase transition between a low-temperature/low-force compact (folded) structure and a high-temperature/high-force molten (unfolded) structure. The influence of c on phase diagrams, critical exponents, melting, and force extension curves is derived analytically. For vanishing pulling force, only for the limited range of loop exponents 2 < c ≲ 2.479 a melting transition is possible; for c ≤ 2 the chain is always in the folded phase and for 2.479 ≲ c always in the unfolded phase. A force-induced melting transition with singular behavior is possible for all loop exponents c < 2.479 and can be observed experimentally by single-molecule force spectroscopy. These findings have implications for the hybridization or denaturation of double-stranded nucleic acids. The Poland-Scheraga model for nucleic acid duplex melting does not allow base pairing between nucleotides on the same strand in denatured regions of the double strand. If the sequence allows these intra-strand base pairs, we show that for a realistic loop exponent c ≈ 2.1 pronounced secondary structures appear inside the single strands. This leads to a lower melting temperature of the duplex than predicted by the Poland-Scheraga model. Further, these secondary structures renormalize the effective loop exponent \( \hat{{c}}\), which characterizes the weight of a denatured region of the double strand, and thus affect universal aspects of the duplex melting transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.F. Gesteland, T.R. Cech, J.F. Atkins (Editors), The RNA World, 2nd edn. (Cold Spring Harbor Laboratory Press, Woodbury, 2005).

  2. S.B. Smith, Y.J. Cui, C. Bustamante, Science 271, 795 (1996).

    Article  ADS  Google Scholar 

  3. J. Liphardt, S. Dumont, S.B. Smith, I. Tinoco jr., C. Bustamante, Science 296, 1832 (2002).

    Article  ADS  Google Scholar 

  4. M. Rief, H. Clausen-Schaumann, H.E. Gaub, Nat. Struct. Biol. 6, 346 (1999).

    Article  Google Scholar 

  5. B. Maier, D. Bensimon, V. Croquette, Proc. Natl. Acad. Sci. U.S.A. 97, 12002 (2000).

    Article  ADS  Google Scholar 

  6. U. Bockelmann, B. Essevaz-Roulet, F. Heslot, Phys. Rev. Lett. 79, 4489 (1997).

    Article  ADS  Google Scholar 

  7. A. Mossa, M. Manosas, N. Forns, J.M. Huguet, F. Ritort, J. Stat. Mech. 2009, P02060 (2009).

    Article  Google Scholar 

  8. I. Tinoco, O.C. Uhlenbeck, M.D. Levine, Nature 230, 362 (1971).

    Article  ADS  Google Scholar 

  9. I. Tinoco jr., C. Bustamante, J. Mol. Biol. 293, 271 (1999).

    Article  Google Scholar 

  10. A.V. Finkelstein, O.V. Galzitskaya, Phys. Life Rev. 1, 23 (2004).

    Article  ADS  Google Scholar 

  11. P.G. de Gennes, Biopolymers 6, 715 (1968).

    Article  Google Scholar 

  12. M.S. Waterman, T.F. Smith, Math. Biosci. 42, 257 (1978).

    Article  MATH  Google Scholar 

  13. T.R. Einert, P. Näger, H. Orland, R.R. Netz, Phys. Rev. Lett. 101, 048103 (2008).

    Article  ADS  Google Scholar 

  14. I.L. Hofacker, W. Fontana, P.F. Stadler, L.S. Bonhoeffer, M. Tacker, P. Schuster, Mon. Chem. 125, 167 (1994).

    Article  Google Scholar 

  15. J.S. McCaskill, Biopolymers 29, 1105 (1990).

    Article  Google Scholar 

  16. T.R. Einert, D.B. Staple, H. Kreuzer, R.R. Netz, Biophys. J. 99, 578 (2010).

    Article  ADS  Google Scholar 

  17. A. Montanari, M. Mézard, Phys. Rev. Lett. 86, 2178 (2001).

    Article  ADS  Google Scholar 

  18. U. Gerland, R. Bundschuh, T. Hwa, Biophys. J. 81, 1324 (2001).

    Article  Google Scholar 

  19. M. Müller, F. Krzakala, M. Mézard, Eur. Phys. J. E 9, 67 (2002).

    Google Scholar 

  20. A. Hanke, M.G. Ochoa, R. Metzler, Phys. Rev. Lett. 100, 018106 (2008).

    Article  ADS  Google Scholar 

  21. S. Cocco, J.F. Marko, R. Monasson, C. R. Phys. 3, 569 (2002).

    Article  ADS  Google Scholar 

  22. D.K. Lubensky, D.R. Nelson, Phys. Rev. E 65, 031917 (2002).

    Article  ADS  Google Scholar 

  23. R. Bundschuh, U. Gerland, Phys. Rev. Lett. 95, 208104 (2005).

    Article  ADS  Google Scholar 

  24. T.R. Einert, R.R. Netz, Biophys. J., 100 (11), in print (2010).

  25. Z.J. Tan, S.J. Chen, Biophys. J. 90, 1175 (2006).

    Article  ADS  Google Scholar 

  26. Y.S. Mamasakhlisov, S. Hayryan, V.F. Morozov, C.K. Hu, Phys. Rev. E 75, 061907 (2007).

    Article  ADS  Google Scholar 

  27. M. Baiesi, E. Orlandini, A.L. Stella, Phys. Rev. Lett. 91, 198102 (2003).

    Article  ADS  Google Scholar 

  28. H. Orland, A. Zee, Nucl. Phys. B 620, 456 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. R. Blossey, E. Carlon, Phys. Rev. E 68, 061911 (2003).

    Article  ADS  Google Scholar 

  30. Y. Kafri, D. Mukamel, L. Peliti, Phys. Rev. Lett. 85, 4988 (2000).

    Article  ADS  Google Scholar 

  31. B. Alberts, Molecular Biology of the Cell (Garland Science, 2002).

  32. J.C.M. Gebhardt, T. Bornschlögl, M. Rief, Proc. Natl. Acad. Sci. U.S.A. 107, 2013 (2010).

    Article  ADS  Google Scholar 

  33. T. Xia, J. SantaLucia jr., M.E. Burkard, R. Kierzek, S.J. Schroeder, X. Jiao, C. Cox, D.H. Turner, Biochemistry 37, 14719 (1998).

    Article  Google Scholar 

  34. R. Bundschuh, T. Hwa, Europhys. Lett. 59, 903 (2002).

    Article  ADS  Google Scholar 

  35. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, 1979).

  36. B. Duplantier, Phys. Rev. Lett. 57, 941 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  37. M. Müller, Phys. Rev. E 67, 021914 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Erdélyi, Higher Transcendental Functions, Vol. 1 (McGraw-Hill, 1953).

  39. P. Flajolet, A. Odlyzko, SIAM Discret. Math. 3, 216 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Abramowitz, I.A. Stegun (Editors), Handbook of Mathematical Functions, 10th edn. (U.S. Department of Commerce, 2002).

  41. J.F. Léger, G. Romano, A. Sarkar, J. Robert, L. Bourdieu, D. Chatenay, J.F. Marko, Phys. Rev. Lett. 83, 1066 (1999).

    Article  ADS  Google Scholar 

  42. D. Poland, H.A. Scheraga, J. Chem. Phys. 45, 1456 (1966).

    Article  ADS  Google Scholar 

  43. D. Poland, H.A. Scheraga, J. Chem. Phys. 45, 1464 (1966).

    Article  ADS  Google Scholar 

  44. T. Garel, H. Orland, Biopolymers 75, 453 (2004).

    Article  Google Scholar 

  45. J. SantaLucia jr., Proc. Natl. Acad. Sci. U.S.A. 95, 1460 (1998).

    Article  ADS  Google Scholar 

  46. I.L. Hofacker, Nucleic Acids Res. 31, 3429 (2003).

    Article  Google Scholar 

  47. N.R. Markham, M. Zuker, Nucleic Acids Res. 33, W577 (2005).

    Article  Google Scholar 

  48. P. Schuster, Rep. Prog. Phys. 69, 1419 (2006).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Einert.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einert, T.R., Orland, H. & Netz, R.R. Secondary structure formation of homopolymeric single-stranded nucleic acids including force and loop entropy: Implications for DNA hybridization. Eur. Phys. J. E 34, 55 (2011). https://doi.org/10.1140/epje/i2011-11055-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11055-2

Keywords

Navigation