Skip to main content
Log in

Refractive index for the mechanical refraction of a relativistic particle

  • Regular Article - Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have analytically determined the refractive index for the mechanical refraction of a relativistic particle for its all possible speeds. We have critically analysed the importance of Descartes’ metaphysical theory and extended it in this regard. We have considered the conservation of the tangential component of the relativistic momentum and the relativistic energy of the particle in the process of the mechanical refraction within the optical-mechanical analogy. Our result for the mechanical refractive index exactly matches with the forms of both the Fermat’s result on Snell’s law of optical refraction at the ultra-relativistic limit and the Descartes’ metaphysical result on the pseudo-Snell law of optical refraction at the non-relativistic limit.

Graphic abstract

Mechanical refraction from medium-1 to medium-2 for \(U2>U1\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availibility Statement

No new data were created or analysed in this study. This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.]

Notes

  1. In the limiting case of the geometrical optics the wavelength (\(\lambda \)) of a monochromatic wave in an optical medium is so small compared to the lowest dimension (d) of an aperture in the medium that it satisfies \(\lambda /d\rightarrow 0\).

  2. Here tangential means, tangential to the interface of the two media.

  3. Here, the time is truly not least. Maupertuis’ least abbreviated action principle (\(\delta \int _{q_1}^{q_2}p{\textrm{d}}q=0\) [24, 25]) can, however, be applied to a photon of (relativistic) energy \(E=\hbar \omega \) in an optical medium of refracting index n. The magnitude of the (relativistic) momentum of the photon is given by \(p=E/v_p\) where \(v_p\) is the phase speed of the photon in the medium. Since the energy is conserved in the process of refraction, we can recast Maupertuis’ least abbreviated action principle for the photon as \(\delta \int _{q_1}^{q_2}\frac{{\textrm{d}}q}{v_p}=0\). The infinitesimal displacement of the photon (\({\textrm{d}}q\)) over the infinitesimal time dt is not same as \(v_pdt\) because the phase speed does not represent the actual speed of a photon (particle) in a medium. The difference of these two, of course, was not known during Fermat’s time. However, we can define \(d\text {``}t\text {''}=\frac{{\textrm{d}}q}{v_p}\) as an infinitesimal abbreviated time. Thus we have \(\delta \int _{q_1}^{q_2}d\text {``}t\text {''}=0\). This is Fermat’s least “time” principle. By multiplying c both the sides, it can be further recast as \(\delta \int _{q_1}^{q_2}d\text {``}q\text {''}=0\) where \({\textrm{d}}\text {``}q\text {''}=\frac{c}{v_p}{\textrm{d}}q=n{\textrm{d}}q\) is an infinitesimal optical path-length. Thus the least “time” principle can also be called as the least optical path-length principle.

  4. With spin 0, we are considering the particle to be a scalar particle.

  5. Here \(E_{nr}=\frac{\hbar ^2[\textbf{k}\cdot {\hat{x}}]^2}{2m_0}\) and \(V(x)=-\frac{k^2}{2m_0}[n^2(x)-1]\).

References

  1. R. Rashed, A pioneer in anaclastics: Ibn Sahl on burning mirrors and lenses. ISIS 81, 464 (1990). https://doi.org/10.1086/355456

    Article  MathSciNet  Google Scholar 

  2. A. Kwan, J. Dudley, E. Lantz, Who really discovered Snell’s law? Phys. World 15, 64 (2002). https://doi.org/10.1088/2058-7058/15/4/44

    Article  Google Scholar 

  3. C. Huygens, Dioptrica, ed. B. de Volder and B. Fullenius (Opuscula Posthuma, Leiden, 1703)

  4. C. Huygens, Traitè de la Lumière (Van der Aa, Leiden 1690); English Translation: S. P. Thompson, Treatise on Light (Macmillan, London, 1912)

  5. A. Fresnel, Mèmoire sur la diffraction de la lumière, Mèmoires de l’Acadèmie Royale des Sciences de l’Institut de France (Paris) 5, 339 (1826)

  6. O. Römer, Démonstration touchant le mouvement de la lumière trouvé par, J. des Sçavans, 276 (Paris, 7 Dec. 1676); English Translation: A demonstration concerning the motion of light, Philos. Trans. R. Soc. (London) 12, 893 (1677). https://doi.org/10.1098/rstl.1677.0024

  7. I. Newton, Opticks: or, A treatise of the reflexions, refractions, inflexions and colours of light. Also two treatises of the species and magnitude of curvilinear figures, (Printed for S. Smith and B. Walford, London, 1704). https://doi.org/10.5479/sil.302475.39088000644674

  8. T. Young, A course of lectures on natural philosophy and the mechanical arts, vol. 1, lec. 35: on the theory of optics (Printed for J. Johnson, London, 1807)

  9. A. Fresnel, Mémoire sur la Loi des modifications que la réflexion imprime á la lumiére polarisée, Mémoires de l’Académie Royale des Sciences de l’Institut de France (Paris) 11, 393 (1832)

  10. W. R. Hamilton, Researches respecting vibration, connected with the theory of light, Proc. Royal Irish Academy 1, 341 (1841). See Ref. [11] for the group speed of sound waves

  11. J. W. Strutt (B. Rayleigh), The Theory of Sound, vol. 1, sec. 190 & 191, pp. 244-249 (Macmillan, London, 1877); vol. 2, pp. 297-302 (Macmillan, London, 1878). The vol. 1 and vol. 2 are reprinted (Cambridge University Press, Cambridge, 2011). https://doi.org/10.1017/CBO9781139058087, https://doi.org/10.1017/CBO9781139058094

  12. M. Born, E. Wolf, Principles of Optics, 7th ed., sec. 1.5.1, pp. 38–40 and sec. 3.3.2, pp. 132–133 (Cambridge University Press, Cambridge, 1999). https://doi.org/10.1017/CBO9781139644181

  13. J.C. Maxwell, A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. (Lond.) 155, 459 (1865). https://doi.org/10.1098/rstl.1865.0008

    Article  ADS  Google Scholar 

  14. P. Hansinger, P. Töpfer, N. Dimitrov, D. Adolph, D. Hoff, T. Rathje, A.M. Sayler, A. Dreischuh, G.G. Paulus, Refractive index dispersion measurement using carrier-envelope phasemeters. New J. Phys. 19, 023040 (2017). https://doi.org/10.1088/1367-2630/aa5ca3

    Article  ADS  Google Scholar 

  15. R. Descartes, La Dioptrique, Discours II: de la Réfraction (I. Maire, Leiden, 1637). Reprinted in Oeuvres de Descartes: Discours de la Méthode & Essais VI, ed. C. Adam and P. Tannery, pp. 93–105 (Léopold Cerf, Paris, 1902)

  16. P. de Fermat, A letter on réfraction to C. de la Chambre (Paris, 1 Jan. 1662). Reprinted in Oeuvres de Fermat, ed. P. Tannery and C. Henry, 2, 457–463 (Gauthier-Villars, Paris, 1894)

  17. W. R. Hamilton, On the application to dynamics of a general mathematical method previously applied to optics, British Association Report 4(Here 4 means the 4th meeting.), 513 (1834). A. S. Kompaneyets, A Course of Theoretical Physics, vol. 1 (Fundamental Laws), sec. 21, pp. 269–278 (Mir, Moscow, 1978). Also see Ref. [42] for the same

  18. H. G. Danielmeyer, H. P. Weber, Direst measurement of the group velocity of light. Phys. Rev. A 3, 1708 (1970). https://doi.org/10.1103/PhysRevA.3.1708.

  19. M. Babicz, S. Bordoni, A. Fava, U. Kose, M. Nessi, F. Pietropaolo, G.L. Raselli, F. Resnati, M. Rossella, P. Sala, F. Stockera, A. Zani, A measurement of the group velocity of scintillation light in liquid argon. JINST 15, P09009 (2020). https://doi.org/10.1088/1748-0221/15/09/P09009

    Article  ADS  Google Scholar 

  20. A. Einstein, Zur elektrodynamik bewegter körper. Annalen der Physik 17, 891 (1905). https://doi.org/10.1002/andp.2005517S113

    Article  ADS  Google Scholar 

  21. A. Einstein, Ist die trägheit eines körpers von seinem energieinhalt abhängig? Annalen der Physik 18, 639 (1905). https://doi.org/10.1002/andp.19053231314

    Article  ADS  Google Scholar 

  22. W.B. Joyce, A. Joyce, Descartes, Newton, and Snell’s law. J. Opt. Soc. Am. 66, 1 (1976). https://doi.org/10.1364/JOSA.66.000001

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Drosdoff, A. Widom, Snell’s law from an elementary particle viewpoint. Am. J. Phys. 73, 973 (2005). https://doi.org/10.1119/1.2000974

    Article  ADS  Google Scholar 

  24. P. L. M. de Maupertuis, Accord de différentes loix de la nature qui avoient jusqu’ici paru incompatibles, Mémoires de l’Académie Royale des Sciences de l’Institut de France (Paris), 417 (15 Apr. 1744); Reprinted in Essay de Cosmologie, pp. 154–173 (Mens Agitat Molem. Æneid. Lib. VI. 1750)

  25. L.D. Landau, E.M. Lifshitz, Mechanics, 3rd edn., sec. 44, pp. 140–143 (Butterworth-Heinemann, Oxford, 1976)

  26. R.D. Luca, M. Di Mauro, A. Naddeo, Revista Brasileira de Ensino de Física 42, e20190339 (2020). https://doi.org/10.1590/1806-9126-RBEF-2019-0339

    Article  Google Scholar 

  27. See sec. 1.3, pp. 14–15 of Ref. [12]

  28. O. Klein, Quantentheorie und füunfdimensionale relativitäatstheorie. Z. Physik 37, 895 (1926). https://doi.org/10.1007/BF01397481

    Article  ADS  Google Scholar 

  29. W. Gordon, Der comptoneffekt nach der Schrödingerschen theorie, Z. Physik 40, 117 (1926). https://doi.org/10.1007/BF01390840; V. Fock, Zur Schrödingerschen wellenmechanik, Z. Physik 38, 242 (1926). https://doi.org/10.1007/BF01399113

  30. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, 2nd edn., vol. 1, ch. 1, sec. D-2-b & D-2-c, pp. 27–30 (Wiley-VCH, Weinheim, 2020)

  31. S. Dutta Gupta, A. Banerjee, N. Ghosh, Wave Optics: Basic Concepts and Contemporary Trends, sec. 9.5, pp. 183–185 (Taylor & Francis, New York, 2016) https://doi.org/10.1201/b19330

  32. H. Rauch, S. A. Werner, Neutron Interferometry, 2nd edn, sec. 1.1, pp. 9–9 (Oxford University Press, Oxford, 2015). https://doi.org/10.1093/acprof:oso/9780198712510.001.0001

  33. I. Kay, H.E. Moses, Reflectionless transmission through dielectrics and scattering potentials. J. Appl. Phys. 27, 1503 (1956). https://doi.org/10.1063/1.1722296

    Article  ADS  Google Scholar 

  34. E. Yang, Y. Lu, Y. Wang, Y. Dai, P. Wang, Unidirectional reflectionless phenomenon in periodic ternary layered material. Opt. Express 24, 14311 (2016). https://doi.org/10.1364/OE.24.014311

    Article  ADS  Google Scholar 

  35. S.A.R. Horsley, S. Longhi, Spatiotemporal deformations of reflectionless potentials. Phys. Rev. A 96, 023841 (2017). https://doi.org/10.1103/PhysRevA.96.023841

  36. A. Szameit, F. Dreisow, M. Heinrich, S. Nolte, A.A. Sukhorukov, Realization of reflectionless potentials in photonic lattices. Phys. Rev. Lett. 106, 193903 (2011). https://doi.org/10.1103/PhysRevLett.106.193903

  37. A. Sommerfeld, Über die fortpflanzung des lichtes in dispergierenden medien. Annalen der Physik 44, 177 (1914). https://doi.org/10.1002/andp.19143491002

    Article  ADS  Google Scholar 

  38. L. Brillouin, Über die fortpflanzung des lichtes in dispergierenden medien, Annalen der Physik 44, 203 (1914); A. Sommerfeld, Optics (Lectures on Theoretical Physics Vol. IV), (Academic Press, New York, 1954); Also see sec. 22, pp. 114-135 of the Indian reprint of the book (Levant Books, Kolkata, 2006). https://doi.org/10.1002/andp.19143491003

  39. J.C. Bose, On the rotation of plane of polarisation of electric waves by a twisted structure. Proc. R. Soc. Lond. 63, 146 (1898). https://doi.org/10.1098/rspl.1898.0019

    Article  Google Scholar 

  40. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \). Sov. Phys. Usp. 10, 509 (1967). https://doi.org/10.1070/PU1968v010n04ABEH003699

    Article  ADS  Google Scholar 

  41. R.A. Shelby, D.R. Smith, S. Shultz, Experimental verification of a negative index of refraction. Science 292, 77 (2001). https://doi.org/10.1126/science.1058847

  42. W. R. Hamilton, On a general method in dynamics; by which the study of the motions of all free systems of attracting or repelling points is reduced to the search and differentiation of one central relation, or characteristic function. Philos. Trans. R. Soc. (London) 124, 247 (1834); W. R. Hamilton, Second essay on a general method in dynamics. Philos. Trans. R. Soc. (London) 125, 95 (1835)

  43. See sec. 2, pp. 2–4 of Ref. [25].

  44. A. Rojo, A. Bloch, The Principle of Least Action: History and Physics (Cambridge University Press, Cambridge, 2018). https://doi.org/10.1017/9781139021029

    Book  Google Scholar 

  45. D.J. Griffiths, Introduction to Electrodynamics, 4th Indian edn, sec. 9.3.1, pp. 407–407, (Pearson, Noida, 2015)

  46. S.M. Barnett, Resolution of the Abraham-Minkowski dilemma. Phys. Rev. Lett. 104, 070401 (2010). https://doi.org/10.1103/PhysRevLett.104.070401

    Article  ADS  Google Scholar 

  47. R. Resnick, Introduction to Special Relativity (Wiley, New York, 1968)

    Google Scholar 

  48. See sec. 8.2, pp. 413–417 of Ref. [12]

  49. D.G. de Grooth, Why is the propagation velocity of a photon in a transparent medium reduced? Am. J. Phys. 65, 1156 (1997). https://doi.org/10.1119/1.18754

    Article  ADS  Google Scholar 

  50. C.A. Mead, Quantum theory of the refractive index. Phys. Rev. 110, 359 (1958). https://doi.org/10.1103/PhysRev.110.359

Download references

Acknowledgements

S. Biswas acknowledges partial financial support of the SERB, DST, Govt. of India under the EMEQ Scheme [No. EEQ/2023/000788]. B. K. Behera acknowledges the financial support through the Non-NET Fellowship Scheme of the University of Hyderabad. We thank the anonymous reviewers for their thorough review. We highly appreciate their comments which significantly contributed to improving the quality of the article.

Author information

Authors and Affiliations

Authors

Contributions

BKB and SKG together solved the problem and wrote the article. SB framed the problem, solved the problem, and wrote the article.

Corresponding author

Correspondence to Shyamal Biswas.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, B.K., Gour, S.K. & Biswas, S. Refractive index for the mechanical refraction of a relativistic particle. Eur. Phys. J. D 78, 60 (2024). https://doi.org/10.1140/epjd/s10053-024-00849-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-024-00849-z

Navigation