Skip to main content
Log in

Exploring the influence of intrinsic decoherence on residual entanglement and tripartite uncertainty bound in XXZ Heisenberg chain model

  • Regular Article - Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The uncertainty principle restricts our capacity to precisely predict the measurement outcome of two incompatible observables. By taking into account two more particles as the quantum memories that correlate with the observed particle, the tripartite entropic uncertainty bound can be promoted. This paper discusses the impact of intrinsic decoherence on the dynamics of tripartite uncertainty bound (TUB) and residual entanglement in a three-qubit XXZ Heisenberg chain coupled to Dzyaloshinskii–Moriya interaction (DMI) and exposed to a uniform magnetic field; we consider the case where both interactions are working in the z-direction. To identify residual entanglement, we employ negativity (N) as an entanglement measure. The impact of different system parameters on the dynamics of residual entanglement, bipartite negativity, and TUB is discussed. We highlight the relationship between these entanglement measures (residual entanglement and bipartite entanglement) and the TUB. Two cases of initial state for the nearest-neighbor particle (A and B) are considered in this work: the maximally entangled state (Bell-state) and the separable state. Regarding the maximal entangled state, it has been observed that the negative effect of magnetic field is significantly stronger than the DMI in the presence of decoherence, and that it has the ability to completely destroy the entanglements and maximize TUB value. Moreover, it has been ascertained that we can improve the residual entanglement and TUB by controlling the decoherence rate. As for the separable initial state, it has been found that the DMI in this case stimulates the effect of intrinsic decoherence, which can highlight the entanglement sudden death phenomenon and reduce the accuracy of the prediction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: For further data, they are available from the corresponding author upon reasonable request.]

References

  1. Y. Xiao et al., Phys. Rev. Res. 3, 023077 (2021)

    Article  Google Scholar 

  2. V. Jijnasu, Stud. Hist. Philos. Sci. Part B: Stud. Hist. Philos. Modern Phys. 55, 62 (2016)

    ADS  MathSciNet  Google Scholar 

  3. S. Zozor, M. Portesi, C. Vignat, Phys. A 387, 4800 (2008)

    Article  MathSciNet  Google Scholar 

  4. J. Oppenheim, S. Wehner, Science 330, 1072 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. C.-F. Li et al., Nat. Phys. 7, 752 (2011)

    Article  Google Scholar 

  6. W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z, Physik 43, 172 (1927)

    Article  ADS  Google Scholar 

  7. E.H. Kennard, Z. Phys. 44, 326 (1927)

    Article  ADS  Google Scholar 

  8. H.P. Robertson, Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  9. E. Schrödinger, Physikalisch-Mathematische Klasse 14, 296 (1930)

    Google Scholar 

  10. D. Deutsch, Phys. Rev. Lett. 50, 631 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  11. K. Kraus, Phys. Rev. D 35, 3070 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  12. H. Maassen, J.B.M. Uffink, Phys. Rev. Lett. 60, 1103 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Berta, M. Christandl, R. Colbeck, J.M. Renes, R. Renner, Nat. Phys. 6, 659 (2010)

    Article  Google Scholar 

  14. A.A. Chli, N. Habiballah, M. Nassik, Quantum Inf. Process. 92, 20 (2021)

    Google Scholar 

  15. M. Mansour, S. Haddadi, Mod. Phys. Lett. A 36, 2150010 (2021)

    Article  ADS  Google Scholar 

  16. H. Huang, I. Ahmed, X.W. Zha, Y. Zhang, Laser Phys. Lett. 18, 105201 (2021)

    Article  ADS  Google Scholar 

  17. A.K. Pati, M.M. Wilde, A.R. Usha Devi, A.K. Rajagopal, S. Sheney, Phys. Rev. A 86, 042105 (2012)

    Article  ADS  Google Scholar 

  18. F. Adabi, S. Salimi, S. Haseli, Phys. Rev. A 93, 062123 (2016)

    Article  ADS  Google Scholar 

  19. A.S. Holevo, Probl. Inf. Transm. 9, 177 (1973)

    Google Scholar 

  20. F. Dupuis, O. Fawzi, S. Wehner, IEEE Trans. Inf. Theory 61(2), 1093 (2014)

    Article  Google Scholar 

  21. R. Konig, S. Wehner, J. Wullschleger, IEEE Trans. Inf. Theory 58(3), 1962 (2012)

    Article  Google Scholar 

  22. G. Vittorio, L. Seth, M. Lorenzo, Nat. Photon. 5(4), 222 (2011)

    Article  Google Scholar 

  23. Y. Chang-shui, Phys. Rev. A 95(4), 042337 (2017)

    Article  ADS  Google Scholar 

  24. G. Vallone, D.G. Marangon, M. Tomasin, P. Villoresi, Phys. Rev. A 90(5), 052327 (2014)

    Article  ADS  Google Scholar 

  25. Z. Cao, H. Zhou, X. Yuan, X. Ma, Phys. Rev. X 6(1), 011020 (2016)

    Google Scholar 

  26. P.J. Coles, M. Piani, Phys. Rev. A 89(1), 010302 (2014)

    Article  ADS  Google Scholar 

  27. H. Ming-Liang, H. Fan, Phys. Rev. A 88(1), 014105 (2013)

    Article  ADS  Google Scholar 

  28. J.M. Renes, J.C. Boileau, Phys. Rev. Lett. 103, 020402 (2009)

    Article  ADS  Google Scholar 

  29. H. Dolatkhah, S. Haseli, S. Salimi, A.S. Khorashad, Phys. Rev. A 102, 052227 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Haddadi, M.R. Pourkarimi, S. Haseli, Sci. Rep. 11, 13752 (2021)

    Article  ADS  Google Scholar 

  31. G.F. Zhang, S.S. Li, Phys. Rev. A 72, 034302 (2005)

    Article  ADS  Google Scholar 

  32. F. Kheirandish, S.J. Akhtarshenas, H. Mohammadi, Phys. Rev. A 77, 042309 (2008)

    Article  ADS  Google Scholar 

  33. Q. Liang, Commun. Theor. Phys. 60, 391 (2013)

    Article  Google Scholar 

  34. Z. Hu, Y.C. Wang, X.W. Hou, Int. J. Quantum Inform. 13, 1550046 (2015)

    Article  ADS  Google Scholar 

  35. M.R. Pourkarimi, Int. J. Theor. Phys. 57, 1158 (2018)

    Article  Google Scholar 

  36. Y. Khedif, M. Daoud, E.H. Sayouty, Phys. Scr. 94, 125106 (2019)

    Article  ADS  Google Scholar 

  37. S. Haddadi, M.R. Pourkarimi, A. Akhound, M. Ghominejad, Mod. Phys. Lett. A 34, 1950175 (2019)

    Article  ADS  Google Scholar 

  38. A.B.A. Mohamed, A. Farouk, M.F. Yassen, H. Eleuch, Appl. Sci. 10, 3782 (2020)

    Article  Google Scholar 

  39. M.A. Yurischev, Quantum Inf. Process. 19, 336 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  40. Y. Khedif, A. Errehymy, M. Daoud, Eur. Phys. J. Plus 136, 336 (2021)

    Article  Google Scholar 

  41. Y. Khedif, M. Daoud, Mod. Phys. Lett. A 36, 2150074 (2021)

    Article  ADS  Google Scholar 

  42. N. Habiballah, A. Salah, L. Jebli, M. Amaziog, J. El Qars, M. Nassik, Modern Phys. Lett. A 35, 2050138 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  43. S. Haddadi, A. Akhound, Int. J. Theor. Phys. 58, 399 (2019)

    Article  Google Scholar 

  44. C.C. Liu, S.C. Cen, Z.L. Liu, J.D. Shi, Z.Y. Ding, J. He, T. Wu, L. Ye, Laser Phys. Lett. 18, 075202 (2021)

    Article  ADS  Google Scholar 

  45. R.A. Abdelghany, A.B.A. Mohamed, M. Tammam, A.S.F. Obada, Eur. Phys. J. Plus 136, 680 (2021)

    Article  Google Scholar 

  46. A.B.A. Mohamed, A.H. Abdel-Aty, E.G. El-Hadidy, H.A.A. El-Saka, Results Phys. 30, 104777 (2021)

    Article  Google Scholar 

  47. A.B.A. Mohamed, F. Farouk, M.F. Yassen, H. Eleuch, Appl. Sci. 10, 3782 (2020)

    Article  Google Scholar 

  48. D. Wang, A. Huang, F. Ming, W. Sun, H. Lu, C. Liu, L. Ye, Laser Phys. Lett. 14, 065203 (2017)

    Article  ADS  Google Scholar 

  49. T.A.S. Ibrahim, M.E. Amin, A. Salah, Int. J. Theor. Phys. 62, 14 (2023)

    Article  Google Scholar 

  50. M.R. Pourkarimi, Int. J. Quantum Inf. 16, 1850057 (2018)

    Article  MathSciNet  Google Scholar 

  51. S. Haddadi, M.R. Pourkarimi, A. Akhound, M. Ghominejad, Laser Phys. Lett. 16, 095202 (2019)

    Article  ADS  Google Scholar 

  52. W.N. Shi, F. Ming, D. Wang, L. Ye, Quantum Inf. Process. 18, 70 (2019)

    Article  ADS  Google Scholar 

  53. N. Zidan, Entropy 22, 837 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  54. S. Haddadi, M. Ghominejad, A. Akhound, M.R. Pourkarimi, Laser Phys. Lett. 17, 095205 (2020)

    Article  ADS  Google Scholar 

  55. S. Haseli, S. Haddadi, M.R. Pourkarimi, Opt. Quant. Electron. 52, 465 (2020)

    Article  Google Scholar 

  56. S. Haseli, S. Haddadi, M.R. Pourkarimi, Laser Phys. 31, 055203 (2021)

    Article  ADS  Google Scholar 

  57. L.J. Li, F. Ming, W.N. Shi, L. Ye, D. Wang, Physica E 133, 114802 (2021)

    Article  Google Scholar 

  58. S. Haddadi, M. Ghominejad, A. Akhound, M.R. Pourkarimi, Laser Phys. Lett. 18, 085204 (2021)

    Article  ADS  Google Scholar 

  59. Y. Khedif, S. Haddadi, M.R. Pourkarimi, M. Daoud, Mod. Phys. Lett. A 36, 2150209 (2021)

    Article  ADS  Google Scholar 

  60. N.H. Abdel-Wahab, T.A.S. Ibrahim, M.E. Amin, A. Salah, Opt. Quant. Electron. 56, 1 (2024)

    Article  Google Scholar 

  61. S.J. Xiong, Z. Sun, J.M. Liu, Laser Phys. Lett. 17, 095203 (2020)

    Article  ADS  Google Scholar 

  62. F.H. Ju, Z.Y. Zhang, J.M. Liu, Commun. Theor. Phys. 72, 125102 (2020)

    Article  ADS  Google Scholar 

  63. R.A. Abdelghany, A.B.A. Mohamed, M. Tammam, W. Kuo, H. Eleuch, Sci. Rep. 11, 11830 (2021)

    Article  ADS  Google Scholar 

  64. S. Haddadi, M.R. Pourkarimi, Y. Khedif, M. Daoud, Eur. Phys. J. Plus 137, 66 (2022)

    Article  Google Scholar 

  65. D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  66. G. Burkard, D. Loss, D.P. DiVincenzo, Phys. Rev. B 59, 2070 (1999)

  67. C. Radhakrishnan, M. Parthasarathy, S. Jambulingam, T. Byrnes, Phys. Rev. Lett. 116, 150504 (2016)

    Article  ADS  Google Scholar 

  68. J. Ren, Y. Wang, W.L. You, Phys. Rev. A 97, 042318 (2018)

    Article  ADS  Google Scholar 

  69. R. Toskovic et al., Nat. Phys. 12(7), 656 (2016)

    Article  Google Scholar 

  70. A. Einstein, E. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  71. V. Coffman, J. Kundu, W.K. Wootters, Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  72. S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  73. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  74. G.J. Milburn, Phy. Rev. A 44, 5401 (1990)

    Article  ADS  Google Scholar 

  75. A.A. Chlih, N. Habiballah, M. Nassik, Int. J. Theor. Phys. 6(1), 49 (2022)

    Article  Google Scholar 

  76. G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  77. C. Sabín, G. García-Alcain, Eur. Phys. J. D 48, 435 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  78. F. Anza, M. Benedetto, M. Antonino, J. Phys. B: Atom. Mol. Opt. Phys. 43, 205501 (2010)

    Article  ADS  Google Scholar 

  79. T. Yu, J.H. Eberly, Science 323, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  80. M. Hashem, A.-B.A. Mohamed, S. Haddadi, Y. Khedif, M.R. Pourkarimi, M. Daoud, Appl. Phys. B 87, 128 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TAS Ibrahim derived the main results, did the numerical calculations and wrote the first draft and the introduction. AS improved the quality of the work. Also, he contributed to the development of the idea. The manuscript was revised by NH A-W and MEA. Thorough checking of the manuscript was done by all authors.

Corresponding author

Correspondence to T. A. S. Ibrahim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Appendix

Appendix

(Milburn’s Solution):

Firstly, the matrix representation of the initial state density matrix (Eq. 14) is

$$\begin{aligned}{} & {} {\hat{\rho }}_{ABC}(0)\nonumber \\{} & {} =\left( \begin{array}{cccccccc} p &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \sqrt{p(1-p)} &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ \sqrt{p(1-p)} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1-p &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ \end{array} \right) .\nonumber \\ \end{aligned}$$
(47)

Also, the matrix form of the eigenvectors is:

$$\begin{aligned} \begin{aligned}&|\psi _{1}\rangle =\frac{1}{\sqrt{2}}\left( \begin{array}{c} 0 \\ \frac{D_z-i}{D_z+i} \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \quad \quad |\psi _{2}\rangle =\frac{1}{\sqrt{2}}\left( \begin{array}{c} 0 \\ \frac{D_z-i}{D_z+i} \\ 0 \\ 0 \\ 1\\ 0 \\ 0 \\ 0 \\ \end{array} \right) \\&|\psi _{3}\rangle = \left( \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ \end{array} \right) \quad \quad |\psi _{4}\rangle = \left( \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \\ {}&|\psi _{5}\rangle = \mu _+\left( \begin{array}{c} 0 \\ 0 \\ 0 \\ -\frac{D_z-i}{D_z+i} \\ 0 \\ -\frac{i (J+Q)}{2(D_z+i)} \\ 1 \\ 0 \\ \end{array} \right) \quad \quad |\psi _{6}\rangle = \mu _+\left( \begin{array}{c} 0 \\ \frac{-(D_z-i) }{D_z+i} \\ -\frac{i (J+Q) }{2 (D_z+i)} \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \\&|\psi _{7}\rangle = \mu _-\left( \begin{array}{c} 0 \\ 0 \\ 0 \\ -\frac{D_z-i}{D_z+i} \\ 0 \\ -\frac{i (J-Q)}{2(D_z+i)} \\ 1 \\ 0 \\ \end{array} \right) \quad \quad |\psi _{8}\rangle = \mu _-\left( \begin{array}{c} 0 \\ \frac{-(D_z-i) }{D_z+i} \\ -\frac{i (J-Q) }{2 (D_z+i)} \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) . \end{aligned}\nonumber \\ \end{aligned}$$
(48)

Using eigenvectors (Eq. 48) of the Hamiltonian and the initial state (Eq. 47) together with the definition of dynamical density matrix (Eq. 12), the components of \(\delta _{mn}\) (\(\delta _{mn}=\langle \psi _m| \rho _{ABC}(0) |\psi _n\rangle \)) can be written as:

$$\begin{aligned} \begin{aligned} \delta _{11}&=\frac{1-p}{2}\\ \delta _{14}&=\delta _{41}=\frac{\sqrt{p(1-p)}}{2}\\ \delta _{15}&= \delta _{51}=\frac{1-p}{\sqrt{2}}\mu _+ \\ \delta _{44}&=p \delta _{17}=\delta _{71}=\frac{1-p}{\sqrt{2}}\mu _- \\ \delta _{45}&=\delta _{54}=\sqrt{p(1-p)}\mu _+ \\ \delta _{55}&= (1-p)\mu _+^{2} \delta _{47}=\delta _{74}=\sqrt{p(1-p)}\mu _- \\ \delta _{57}&=\delta _{75}=(1-p)\mu _+\mu _- \\ \delta _{77}&= (1-p)\mu _-^{2}. \end{aligned} \end{aligned}$$
(49)

Furthermore, we can obtain the matrix representation for all \(\psi _{m,n}\), by using these eigenvectors and \(\psi _{m,n}=|\psi _m\rangle \langle \psi _n|\) directly.

On the other hand, we can deduce the corresponding components of \(\beta _{mn}\) by using the eigenvalues of H (Eq. 6) such that:

$$\begin{aligned} \begin{aligned}&\beta _{11}= =\beta _{44}=\beta _{55}=\beta _{77}=1 \\&\beta _{14}=\beta _{41}^*=e^{(i\eta -\frac{\gamma }{2}\eta ^2)t} \\&\beta _{15}= \beta _{51}^*=e^{-(i\xi _++\frac{\gamma }{2}\xi _+^2)t} \\&\beta _{17}=\beta _{71}^*=e^{-(i\xi _-+\frac{\gamma }{2}\xi _-^2)t} \\&\beta _{45}=\beta _{54}^*=e^{-\left( i(\eta +\xi _+)+\frac{\gamma }{2}(\eta +\xi _+)^2\right) t} \\&\beta _{47}= \beta _{74}^*=e^{-\left( i(\eta +\xi _-)+\frac{\gamma }{2}(\eta +\xi _-)^2\right) t} \\&\beta _{57}=\beta _{75}^*=e^{\left( i(\xi _+-\xi _-)-\frac{\gamma }{2}(\xi _+-\xi _-)^2\right) t}. \end{aligned} \end{aligned}$$
(50)

Finally, the general solution is

$$\begin{aligned} {\hat{\rho }}_{ABC}(t)=\sum _{i,j=1,4,5,7}\beta _{ij}\delta _{ij}\psi _{ij}. \end{aligned}$$
(51)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Wahab, N.H., Ibrahim, T.A.S., Amin, M.E. et al. Exploring the influence of intrinsic decoherence on residual entanglement and tripartite uncertainty bound in XXZ Heisenberg chain model. Eur. Phys. J. D 78, 28 (2024). https://doi.org/10.1140/epjd/s10053-024-00822-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-024-00822-w

Navigation