Skip to main content
Log in

Experimental study of the dielectric barrier discharges electromagnetic noise

  • Regular Article - Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

For the surface dielectric barrier discharge in the air, we investigated the effect of the discharge voltage, sinusoidal or square-driving voltage waveforms, and one or three strips-driven electrodes on spectra of the electric component of emitted electromagnetic waves within the frequency band up to 500 MHz. Besides the spectra, we monitored the discharge voltage, current, and voltage drop on the measuring capacitor to show a correlation among these quantities. We found that the most intense emission, independent of the discharge voltage, voltage waveforms, and the number of strips of the driven electrode, is in the range of frequencies from 30 to 80 MHz, which corresponds to the very high-frequency band. Our results indicate that the increase of the discharge voltage increases the power level of the emitted radiation, but it does not substantially affect the frequencies distribution in emitted spectra. On the other hand, the driving voltage waveform influences discharge emissions. The power level of this emission for the whole frequency spectrum and both types of driven electrodes is higher for the square-driving voltage than for the sinusoidal driving voltage. Finally, the change in the number of strips of the driven electrode causes differences in the power level and frequencies of emitted radiation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. Data will be made available on reasonable request.

References

  1. G. Neretti, in Recent Progress in Some Aircraft Technologies, ed. by K.A. Ramesh (IntechOpen, 2016) Ch.3, https://doi.org/10.5772/62720

  2. J.J. Wang, K.S. Choi, L.H. Feng, T.N. Jukes, R.D. Whalley, Prog. Aerosp. Sci. 62, 52 (2013). https://doi.org/10.1016/j.paerosci.2013.05.003

    Article  Google Scholar 

  3. P. Zhao, S. Portugal, S. Roy, Appl. Phys. Lett. 107, 033501 (2015). https://doi.org/10.1063/1.4927051

    Article  CAS  ADS  Google Scholar 

  4. I. Garcia-Hallo, D. Lemaire, A. Bigand, I. Revel, Study of Electromagnetic Emissions Due to Surface Discharges, International Conference on Lightning, Static Electricity (2015) https://doi.org/10.1049/ic.2015.0184

  5. L. Wei, W. Lin, W. Liao, Z. Zhang, Y. Chen, P. Yuan, J. Electrostat. 119, 103748 (2022). https://doi.org/10.1016/j.elstat.2022.103748

    Article  CAS  Google Scholar 

  6. J. Pons, E. Moreau, G. Touchard, J. Phys. D Appl. Phys. 38, 3635–3642 (2005). https://doi.org/10.1088/0022-3727/38/19/012

    Article  CAS  ADS  Google Scholar 

  7. N.M. Houser, S.C. Fabbro, P. Lavoie, AIAA J. 56, 5 (2018). https://doi.org/10.2514/1.J056489

    Article  Google Scholar 

  8. H.K. Cha, S.J. Kim, D.W. Park, G.S. Kil, J. Electr. Eng. Technol. (2011). https://doi.org/10.5370/JEET.2012.7.3.389

    Article  Google Scholar 

  9. N. Benard, E. Moreau, Appl. Phys. Lett. 100, 193503 (2012). https://doi.org/10.1063/1.4712125

    Article  CAS  ADS  Google Scholar 

  10. K.B. Rajasekarababu, Plasma Actuators in Aircraft Wing, Research (2015) https://doi.org/10.13140/RG.2.1.3767.3128

  11. L. Hansen, L. Rosenfeldt, K.A. Reck, H. Kersten, J. Appl. Phys. 129, 053308 (2021). https://doi.org/10.1063/5.0035671

    Article  CAS  ADS  Google Scholar 

  12. L. Hansen, B.M. Goldberg, D. Feng, R.B. Miles, H. Kersten, S. Reuter, Plasma Sour. Sci. Technol. 30, 045004 (2021). https://doi.org/10.1088/1361-6595/abe955

    Article  CAS  ADS  Google Scholar 

  13. Y.P. Reizer, Gas Discharge Physics (Springer, Berlin, 1997)

    Google Scholar 

  14. U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003). https://doi.org/10.1023/A:1022470901385

    Article  CAS  Google Scholar 

  15. R. Brandenburg, Plasma Sour. Sci. Technol. 26, 053001 (2017). https://doi.org/10.1088/1361-6595/aa6426

    Article  ADS  Google Scholar 

  16. A.V. Pipa, J. Koskulics, R. Brandenburg, T. Hoder, Rev. Sci. Instrum. 83, 115112 (2012). https://doi.org/10.1063/1.4767637

    Article  CAS  PubMed  ADS  Google Scholar 

  17. FAQ Tekbox Near Field Probes, https://www.tekbox.com/product/FAQ_Near_Field_Probes.pdf

  18. Human Exposure to Radiofrequency Electromagnetic Fields and Reassessment of FCC Radiofrequency Exposure Limits and Policies, Federal Register/Vol. 85, No. 63/April 1, 2020

  19. N. Benard, E. Moreau, Exp. Fluids 55, 1846 (2014). https://doi.org/10.1007/s00348-014-1846-x

    Article  CAS  Google Scholar 

  20. V.I. Gibalov, G.J. Pietsch, Plasma Sour. Sci. Technol. 21, 024010 (2012). https://doi.org/10.1088/0963-0252/21/2/024010

    Article  CAS  ADS  Google Scholar 

  21. N. Jidenko, M. Petit, J.P. Borra, J. Phys. D Appl. Phys. 39, 281–293 (2006). https://doi.org/10.1088/0022-3727/39/2/008

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Czech Technical University in Prague, FEE Fund 122. The authors would also like to thank Mr. P. Neugebauer for taking the discharge photographs and Prof. Krhy for his valuable comments.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the paper.

Corresponding author

Correspondence to Stanislav Pekárek.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekárek, S., Jíra, J. Experimental study of the dielectric barrier discharges electromagnetic noise. Eur. Phys. J. D 77, 203 (2023). https://doi.org/10.1140/epjd/s10053-023-00786-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00786-3

Navigation