Skip to main content
Log in

Study of graphene by proton rainbow scattering

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have studied the transmission of 5 keV protons through graphene. Proton dynamics was modeled by classical theory. Proton trajectories define a mapping of the set of initial proton positions to the set of scattering angles. Singularities of the Jacobian associated with the introduced mapping form curves known as the rainbow lines. The differential cross section is infinite along the rainbow lines, making the proton count significantly larger along the rainbow pattern. Hence, rainbows dominantly determine the shape and size of the angular distribution of transmitted protons. It was found that reorientation of the graphene with respect to the incident beam direction and deformation of the graphene crystal lattice induce the transformation of the proton rainbow pattern. We thoroughly studied the morphological properties of the proton rainbow pattern. It was shown that angular distribution and the corresponding rainbow pattern could be used to determine the covariance matrix of atomic thermal displacements and to characterize point defects present in graphene.

Graphical abstract

Red arrows illustrate the incident and transmitted proton beams, respectively. From left to right are presented perfect graphene with isotropic thermal atomic motion, perfect graphene with anisotropic atomic thermal vibrations, and defective graphene with isotropic thermal vibrations of atoms. Blue surfaces are illustrations of the interaction potential isosurfaces in the vicinity of individual carbon atoms. Black spheres are carbon atoms. Corresponding angular distributions of the transmitted proton beams are presented below. The associated rectangular insets depict enlarged views of the central parts of corresponding distributions. Angular yields are expressed in the logarithmic scale and presented by the associated colormap

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J.A. Venables, G.D.T. Spiller, M. Hanbucken, Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399 (1984). https://doi.org/10.1088/0034-4885/47/4/002

    Article  ADS  Google Scholar 

  2. J.W. Evans, P.A. Thiel, M.C. Bartelt, Morphological evolution during epitaxial thin film growth Formation of 2D islands and 3D mounds. Surf. Sci. Rep. 61(1), 1–128 (2006). https://doi.org/10.1016/j.surfrep.2005.08.004

    Article  ADS  Google Scholar 

  3. K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  ADS  Google Scholar 

  4. K. Cao, S. Feng, Y. Han et al., Elastic straining of free-standing monolayer graphene. Nat. Commun. 11, 1 (2020). https://doi.org/10.1038/s41467-019-14130-0

    Article  ADS  Google Scholar 

  5. M.I. Katsnelson, Graphene: Carbon in Two Dimensions. Cambridge University Press (2012). https://doi.org/10.1017/CBO9781139031080

    Article  ADS  Google Scholar 

  6. G. Fiori et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 1063 (2014). https://doi.org/10.1038/nnano.2014.283

    Article  ADS  Google Scholar 

  7. N. Mohanty, V. Berry, Graphene-based single-bacterium resolution biodevice and DNA-transistor: interfacing graphene-derivatives with nano and micro scale biocomponents. Nano Lett. 8(12), 4469–4476 (2008). https://doi.org/10.1021/nl802412n

    Article  ADS  Google Scholar 

  8. T. Yiang et al., Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by graphene. Adv. Mater. 27(6), 1021–1028 (2014). https://doi.org/10.1002/adma.201404498

    Article  Google Scholar 

  9. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446, 7131 (2007). https://doi.org/10.1038/nature05545

    Article  Google Scholar 

  10. C.S. Allen, E. Liberti, J.S. Kim, Q. Xu, Y. Fan, K. He, A.W. Robertson, H.W. Zandbergen, J.H. Warner, A.I. Kirkland, Temperature dependence of atomic vibrations in mono-layer graphene. J. Appl. Phys. 118, 7 (2015). https://doi.org/10.1063/1.4928324

    Article  Google Scholar 

  11. A. Fasolino, J.H. Los, M.I. Katsnelson, Intrinsic ripples in graphene. Nat. Mater. 6, 858–861 (2007). https://doi.org/10.1038/nmat2011

    Article  ADS  Google Scholar 

  12. W. Tiao et al., A review on lattice defects in graphene: types, generation. Effects and regulation. Micromachines 8, 5 (2017). https://doi.org/10.3390/mi8050163

    Article  Google Scholar 

  13. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5(1), 26–41 (2011). https://doi.org/10.1021/nn102598m

    Article  Google Scholar 

  14. P.T. Araujo, M. Terrones, M.S. Dresselhaus, Defects and impurities in graphene-like materials. Mater. Today 15(3), 98–109 (2012). https://doi.org/10.1016/S1369-7021(12)70045-7

    Article  Google Scholar 

  15. J. Jiang et al. Defect Engineering in 2D Materials: Precise Manipulation and Improved Functionalities. Research (2019). https://doi.org/10.34133/2019/4641739

  16. S. Li, M. Liu, X. Qiu, Scanning probe microscopy of topological structure induced electronic states of graphene. Small Methods 4, 3 (2020). https://doi.org/10.1002/smtd.201900683

    Article  Google Scholar 

  17. H.T. Chin et al., Impact of growth rate on graphene lattice-defect formation within a single crystalline domain. Sci. Rep. 8, 4046 (2018). https://doi.org/10.1038/s41598-018-22512-5

    Article  ADS  Google Scholar 

  18. M. Ziatdinov et al., Building and exploring libraries of atomic defects in graphene: scanning transmission electron and scanning tunneling microscopy study. Sci. Adv. 5, 9 (2019). https://doi.org/10.1126/sciadv.aaw8989

    Article  Google Scholar 

  19. B. Zheng, G.X. Gu, Machine learning-based detection of graphene defects with atomic precision. Nano-Micro Lett. 12, 181 (2020). https://doi.org/10.1007/s40820-020-00519-w

    Article  ADS  Google Scholar 

  20. O.S. Ovchinnikov et al., Detection of defects in atomic-resolution images of materials using cycle analysis. Struct. Chem. Imaging 6, 3 (2020). https://doi.org/10.1186/s40679-020-00070-x

    Article  Google Scholar 

  21. N. Nešković, Rainbow effect in ion channeling. Phys. Rev. B 33, 6030 (1986)

    Article  ADS  Google Scholar 

  22. H.F. Krause, S. Datz, P.F. Dittner, J. Gomez del Campo, P.D. Miller, C.D. Moak, N. Nešković, P.L. Pepmiller, Rainbow effect in axial ion channeling. Phys. Rev. B 33, 6036 (1986)

    Article  ADS  Google Scholar 

  23. S. Petrović, N. Nešković, M. Ćosić, M. Motapothula, M.B.H. Breese, Proton–silicon interaction potential extracted from high-resolution measurements of crystal rainbows. Nucl. Instrum. Methods Phys. Res. B 360, 23–29 (2015)

    Article  ADS  Google Scholar 

  24. S. Petrović, I. Telečki, D. Borka, N. Nešković, Angular distributions of high energy protons channeled in long (10, 10) single-wall carbon nanotubes. Nucl. Instrum. Methods Phys. Res. B 267(14), 2365–2368 (2009)

    Article  ADS  Google Scholar 

  25. M. Ćosić, S. Petrović, S. Bellucci, Rainbow channeling of protons in very short carbon nanotubes with aligned stonewales defects. Nucl. Instrum. Methods Phys. Res. B 367, 37–45 (2016)

    Article  ADS  Google Scholar 

  26. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985). https://doi.org/10.1007/978-1-4615-8103-1_3

    Book  Google Scholar 

  27. G. Moliere, Theorie der Streuung schneller geladener Teilchen I: einzelstreuung am abgeschirmten Coulomb-Feld. Z. Naturforsch 2a, 133–145 (1947)

    Article  ADS  MATH  Google Scholar 

  28. P. Doyle, P. Turner, Relativistic Hartree-Fock X-ray and electron scattering factors. Acta Cryst. A 24, 390–397 (1968). https://doi.org/10.1107/S0567739468000756

    Article  Google Scholar 

  29. X. Artru, S.P. Fomin, N.F. Shulga, K.A. Ispirian, N.K. Zhevago, Carbon nanotubes and fullerites in high-energy and X-ray physics. Phys. Rep. 412(2), 89–189 (2005)

    Article  ADS  Google Scholar 

  30. B.R. Appleton, C. Erginsoy, W.M. Gibson, Channeling effects in the energy loss of 3–11-mev protons in silicon and germanium single crystals. Phys. Rev. 161, 330 (1967). https://doi.org/10.1103/PhysRev.161.330

    Article  ADS  Google Scholar 

  31. M. Ćosić, M. Hadžijojić, S. Petrović, R. Rymzhanov, S. Bellucci, Investigation of the graphene thermal motion by rainbow Scattering. Carbon 145, 161–174 (2019). https://doi.org/10.1016/j.carbon.2019.01.020

    Article  Google Scholar 

  32. E. Gruber, Ultrafast electronic response of graphene to a strong and localized electric field. Nat. Commun. 7, 13948 (2016). https://doi.org/10.1038/ncomms13948

    Article  ADS  Google Scholar 

  33. L.D. Landau, E.M. Lifshitz, Mechanics. Butterworth-Heinemann (1976). https://doi.org/10.1016/C2009-0-25569-3

    Article  MATH  Google Scholar 

  34. S. Petrović, N. Starčević, M. Ćosić, Universal axial (001) rainbow channeling interaction potential. Nucl. Inst. Methods Phys. Res. B 447, 79 (2019). https://doi.org/10.1016/j.nimb.2019.03.050

    Article  ADS  Google Scholar 

  35. N. Starčević, S. Petrović, Crystal rainbow channeling potential for (001) and (111) cubic crystallographic crystals. Nucl. Inst. Methods Phys. Res. B 499, 39–45 (2021). https://doi.org/10.1016/j.nimb.2021.03.004

    Article  ADS  Google Scholar 

  36. M. Ćosić, S. Petrović, N. Nesković, The forward rainbow scattering of low energy protons by a graphene sheet. Nucl. Instr. Methods Phys. Res. B 422, 54 (2018). https://doi.org/10.1016/j.nimb.2018.02.028

    Article  ADS  Google Scholar 

  37. R. Wilhelm, E. Gruber, R. Ritter, R. Heller, S. Facsko, F. Aumayr, Charge exchange and energy loss of slow highly charged ions in 1 nm thick carbon nanomembranes. Phys. Rev. Lett. 112, 153201 (2014). https://doi.org/10.1103/PhysRevLett.112.153201

    Article  ADS  Google Scholar 

  38. D. Jalabert, Real space structural analysis using 3D MEIS spectra from a toroidal electrostatic analyzer with 2D detector. Nucl. Instrum. Methods Phys. Res. B 270, 19 (2012). https://doi.org/10.1016/j.nimb.2011.09.025

    Article  ADS  Google Scholar 

  39. R. Tromp, M. Copel, M. Reuter, M.H. von Hoegen, J. Speidell, R. Koudijs, MH v. Hoegen, J. Speidell, and R. Koudijs. Rev. Sci. Instrum. 62, 2679 (1991). https://doi.org/10.1063/1.1142199

    Article  ADS  Google Scholar 

  40. R. Tromp, H. Kersten, E. Granneman, F. Saris, Granneman E. F, W. Saris, RJ Koudijs and WJ Kilsdonk. Nucl. Instrum. Methods Phys. Res. B 4, 155 (1984). https://doi.org/10.1016/0168-583X(84)90055-7

    Article  ADS  Google Scholar 

  41. R. Smeenk, H.K.R.M. Tromp, A. Boerboom, F. Saris, Nucl. Instrum. Methods Phys. Res. 195, 581 (1982)

    Article  ADS  Google Scholar 

  42. M. Ćosić, M. Hadžijojić, S. Petrović, R. Rymzhanov, Morphological study of the rainbow scattering of protons by graphene. Chaos 31, 093115 (2021). https://doi.org/10.1063/5.0059093

    Article  ADS  Google Scholar 

  43. M. Hadžijojić, M. Ćosić, R. Rymzhanov, Morphological analysis of the rainbow patterns created by point defects of graphene. J. Phys. Chem. C 125(38), 21030–21043 (2021). https://doi.org/10.1021/acs.jpcc.1c05971

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support of the Ministry of Science, Technological Development and Innovation of Serbia under the contract No. 451-03-47/2023-01/200017.

Author information

Authors and Affiliations

Authors

Contributions

M. H. and M. Ć. developed the theoretical framework and performed all calculations. The investigation was supervised by M. Ć, and M. H. wrote the first draft of the manuscript. Both authors commented on the manuscript and approved its final version.

Corresponding author

Correspondence to M. Hadžijojić.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

T.I.: Physics of Ionized Gases and Spectroscopy of Isolated Complex Systems: Fundamentals and Applications. Guest editors: Bratislav Obradović, Jovan Cvetić, Dragana Ilić, Vladimir Srećković and Sylwia Ptasinska.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadžijojić, M., Ćosić, M. Study of graphene by proton rainbow scattering. Eur. Phys. J. D 77, 86 (2023). https://doi.org/10.1140/epjd/s10053-023-00664-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00664-y

Navigation