Skip to main content
Log in

Formation of ion acoustic rogue waves in warm dense matter

  • Regular Article – Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In the current research, we use the hydrodynamic model of electron-ion plasmas with a very general Fermi–Dirac equation of state for electrons in order to investigate the modulational behaviour of ion acoustic (IA) excitation in environments relevant to a wide range of parameters from laboratory to astrophysical phenomena. The reductive perturbation method is used to reduce the model equations into the nonlinear Schrödinger equation from which the dispersion of modulated IA excitations is evaluated and the stability criterion for nonlinear envelope excitations is obtained in terms of normalized electron temperature and chemical potential, applicable to a wide range of parametric space from solid state and inertial-confined fusion plasmas up to the compact stellar objects like white dwarf stars. It is shown that both kinds of bright and dark envelop solitons can exist in warm dense matter, and their stability depends strongly on electron fluid parameters.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd edn. (Plenum Press, London, 1984)

    Google Scholar 

  2. N.A. Krall, A.W. Trivelpeice, Principles of Plasma Physics (San francisco Press, San francisco, 1986)

    Google Scholar 

  3. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges And Materials Processing (Wiley, New York, 1994)

    Google Scholar 

  4. W. Oohara, D. Date, R. Hatakeyama, Phys. Rev. Lett. 95, 175003 (2005). https://doi.org/10.1103/PhysRevLett.95.175003

    Article  ADS  Google Scholar 

  5. P.K. Shukla, L. Stenflo, Phys. Plasmas. 12, 044503 (2005). https://doi.org/10.1063/1.1867494

    Article  ADS  Google Scholar 

  6. S.K. El-Labany, W.M. Moslem, W.F. El-Taibany, M. Mahmoud, Phys. Scr. 70, 317 (2004). https://doi.org/10.1088/0031-8949/70/5/009

    Article  ADS  Google Scholar 

  7. H. Saleem, Phys. Plasmas 13, 044502 (2006). https://doi.org/10.1063/1.2192756

    Article  ADS  Google Scholar 

  8. A. Esfandyari-Kalejahi, I. Kourakis, P.K. Shukla, Phys. Plasmas. 13, 122310 (2006). https://doi.org/10.1063/1.2405328

    Article  ADS  Google Scholar 

  9. W.M. Moslem, P.K. Shukla, Phys. Plasmas 13, 122104 (2006). https://doi.org/10.1063/1.2397585

    Article  ADS  Google Scholar 

  10. I. Kourakis, F. Verheest, N.F. Cramer, Phys. Plasmas. 14, 022306 (2007). https://doi.org/10.1063/1.2446373

    Article  ADS  Google Scholar 

  11. M.Q. Tran, Phys. Scr. 20, 317 (1979)

    ADS  Google Scholar 

  12. N.J. Zabusky, M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)

    ADS  Google Scholar 

  13. N.J. Zabusky, Phys. Rev. 168, 124 (1968)

    ADS  Google Scholar 

  14. C.S. Gardner, J.M. Greene, D. Kruskal, R.M. Miura, Phys. Rev. Lett. 19, 1095 (1972)

    ADS  Google Scholar 

  15. A.C. Scott, F.Y.Y. Chu, D.W. McLaughlin, Proc. IEEE 61, 1443 (1973)

    ADS  MathSciNet  Google Scholar 

  16. H. Ikezi, R. Taylor, D. Baker, Phys. Rev. Lett. 25, ll(1970)

  17. R. Taylor, K.R. MacKenzie, H. Ikezi, Rev. Sci. Instr. 43, 1675 (1972)

    ADS  Google Scholar 

  18. D.J. Korteweg, G. de Vries, Phil. Mag. 39, 422 (1895)

    Google Scholar 

  19. R. C. Davidson, Methods of Nonlinear Plasma Theory (Academic Press, London, 1972)

  20. H. Schamel, Plasma Phys. 14, 205 (1972)

    Google Scholar 

  21. H. Schamel, J. Plasma Phys. 9, 377 (1973)

    ADS  Google Scholar 

  22. R.Z. Sagdeev, A.A. Galeev, in Nonlinear Plasma Theory, edited by T.M. O‘Neil and D.L. Book (Pergamon, New York, 1969)

  23. V.E. Zakharov, A.B. Shabat, Sov. Phys. JETP 34, 62 (1972)

    ADS  Google Scholar 

  24. D.H. Peregrine, in Water waves, nonlinear Schroödinger equations and their solutions. J. Austral. Math. Soc. B 25(16), 3 (1983)

    Google Scholar 

  25. N. Akhmediev, V.I. Korneev, Teor. Mat. Fiz. 69, 189 (1986)

    Google Scholar 

  26. P. Müller, Ch. Garrett, A. Osborne, Rogue waves, The fourteenth ‘Aha Hu-liko‘a Hawaiian Winter Workshop. Oceanography 18, 66 (2005)

    Google Scholar 

  27. L. Draper, Mar. Obs. 35, 193 (1965)

    Google Scholar 

  28. N. Akhmediev, D.R. Heatley, G.I. Stegeman, E.M. Wright, Phys. Rev. Lett. 65, 1423 (1990)

    ADS  Google Scholar 

  29. N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Phys. Rev. E 80, 026601 (2009)

    ADS  Google Scholar 

  30. N. Akhmediev, A. Ankiewicz, M. Taki, Phys. Lett. A 373, 675 (2009)

    ADS  Google Scholar 

  31. N. Akhmediev, V.M. Eleonskii, N.E. Kulagin, Sov. Phys. JETP 62, 894 (1985)

    ADS  Google Scholar 

  32. N. Akhmediev, Nature 413(6853), 267 (2001)

    ADS  Google Scholar 

  33. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J.M. Dudley, The Peregrine soliton in nonlinear fibre optics. Nature Phys. 6, 790 (2010)

    ADS  Google Scholar 

  34. A. Chabchoub, N.P. Hoffmann, N. Akhmediev, Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    ADS  Google Scholar 

  35. A. Chabchoub, N. Hoffmann, M. Onorato, N. Akhmediev, Phys. Rev. X 2, 011015 (2012)

    Google Scholar 

  36. H. Bailung, S. K. Sharma, Y. Nakamura, Phys. Rev. Lett. 107, 255005 (2011). (akhnew,ono,mos1,abd,mos2,trib,mos3,akb1,akb2)

  37. N. Akhmediev, E. Pelinovsky, Rogue waves-towards a unifying concept?: discussions and debates. Eur. Phys. J. Special Topics 185, 5 (2010)

    ADS  Google Scholar 

  38. M. Onorato, S. Residori, U. Bortolozzo, A. Montina, F.T. Arecchi, Phys. Rep. 528, 47 (2013)

    ADS  MathSciNet  Google Scholar 

  39. W.M. Moslem, Phys. Plasmas 18, 032301 (2011)

    ADS  Google Scholar 

  40. U.M. Abdelsalam, W.M. Moslem, A.H. Khater, P.K. Shukla, Phys. Plasmas 18, 092305 (2011)

    ADS  Google Scholar 

  41. W.M. Moslem, R. Sabry, S.K. El-Labany, P.K. Shukla, Phys. Rev. E 84, 066402 (2011)

    ADS  Google Scholar 

  42. M. Bacha, S. Boukhalfa, M. Tribeche, Astrophys. Space Phys. 341, 591 (2012). https://doi.org/10.1007/s10509-012-1129-z

    Article  ADS  Google Scholar 

  43. W. M. Moslem, P. K. Shukla, B. Eliasson, EPL 96, 25002 (2011). https://doi.org/10.1209/0295-5075/96/25002

  44. M. Akbari-Moghanjoughi, Phys. Lett. A 378, 3617 (2014). https://doi.org/10.1016/j.physleta.2014.09.045

    Article  ADS  Google Scholar 

  45. M. Akbari-Moghanjoughi, Phys. Plasmas 21, 102111 (2014). https://doi.org/10.1063/1.4897928

    Article  ADS  Google Scholar 

  46. F. Haas, Quantum Plasmas: An Hydrodynamic Approach (Springer, New York, 2011)

    Google Scholar 

  47. G. Manfredi, How to model quantum plasmas.; Fields Inst. Commun. 46, 263–287 (2005), in Proceedings of the Workshop on Kinetic Theory (The Fields Institute, Toronto, Canada 2004). http://arxiv.org/abs/quant--ph/0505004

  48. S. Chandrasekhar, Science 226, 4674 (1984)

    Google Scholar 

  49. X. Aymerich-Humet, F. Serra-Mestres, J. Millán, J. Appl. Phys. 54, 2850 (1983)

    ADS  Google Scholar 

  50. Th. Stix, Waves in Plasmas (American Institute of Physics, New York, 1992)

    Google Scholar 

  51. D.G. Swanson, Plasma Waves (Institute of Physics Publishing Ltd., Bristol, 2003)

    Google Scholar 

  52. T. Taniuti, Prog. Theor. Phys. Suppl. 55, 1–35 (1974)

    ADS  Google Scholar 

  53. H. Demiray, Phys. Plasmas 23, 032109 (2016)

    ADS  Google Scholar 

  54. S.A. El-Tantawy, N.A. El-Bedwehy, S.K. El-Labany, Phys. Plasmas 20, 072102 (2013)

    ADS  Google Scholar 

  55. A. Ankiewicz, P.A. Clarkson, N. Akhmediev, J. Phys. A 43, 122002 (2010)

    ADS  MathSciNet  Google Scholar 

  56. A. Ankiewicz, N. Devine, N. Akhmediev, Phys. Lett. A 373, 3997 (2009)

    ADS  Google Scholar 

  57. A. Hasegawa, Plasma Instabilities and Nonlinear Effects (Springer-Verlag, Berlin, 1975)

    Google Scholar 

  58. R. Fedele, H. Schamel, P. K. Shukla, Phys. Scr., T 98, 18 (2002)

  59. R. Fedele, H. Schamel, Eur. Phys. J. B 27, 313 (2002)

    ADS  Google Scholar 

  60. R. Fedele, Phys. Scr. 65, 502 (2002)

    ADS  Google Scholar 

  61. I. Kourakis, P.K. Shukla, Nonlinear. Proc. Geophys. 12, 407 (2005)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MAM conceived of the presented idea. MM developed the theoretical formalism, performed the analytic calculations and performed the numerical simulations. MAM and MM verified the analytical methods. MAM encouraged MM to investigate a specific aspect and supervised the findings of this work. All authors discussed the results and contributed to the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadnejad, M., Akbari-Moghanjughi, M. Formation of ion acoustic rogue waves in warm dense matter. Eur. Phys. J. D 75, 307 (2021). https://doi.org/10.1140/epjd/s10053-021-00313-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00313-2

Navigation