Skip to main content
Log in

Latest experimental and theoretical advances in the production of negative ions in caesium-free plasmas

  • Topical Review - Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This topical review gathers the last updates concerning caesium-free negative ion sources presented during the \(63{\mathrm {rd}}\) Course of the International school of Quantum Electronics of the Ettore Majorana Foundation and European collaborative works related to these lectures. Hence, beyond the frame of this course this topical review addresses both theoretical and experimental work performed during these last few years and complexities represented by the conception of a negative ion source ranging from the creation of negative ions to their neutralization.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The paper is a review article and we have not generated any data.]

References

  1. L.W. Alvarez, Rev. Sci. Instrum. 22, 705 (1951)

    Article  ADS  Google Scholar 

  2. D. Wünderlich et al., Rev. Sci. Instrum. 90, 113304 (2019)

    Article  ADS  Google Scholar 

  3. J. Lettry et al., Rev. Sci. Instrum. 87, 02B139 (2016)

    Article  Google Scholar 

  4. R.F. Welton et al., Rev. Sci. Instrum. 87, 02B146 (2016)

    Article  Google Scholar 

  5. M. Yoneda et al., in Proceedings of the Ninth International Conference on Accelerator Mass Spectrometry (2004), pp. 223–224

  6. V. Toigo et al., New J. Phys. 19, 085004 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. V. Dudnikov, Development and Applications of Negative Ion Sources, Springer Series on Atomic, Optical, and Plasma Physics, vol. 110 (2019)

  8. P. Agostinetti et al., Fusion Eng. Des. 159, 111628 (2020)

    Article  Google Scholar 

  9. A. Simonin et al., Nucl. Fusion 61, 046003 (2021)

    Article  ADS  Google Scholar 

  10. M. Capitelli, M. Dilonardo, E. Molinari, Chem. Phys. 20, 417 (1977)

    Article  Google Scholar 

  11. M. Cacciatore, M. Capitelli, M. Dilonardo, Chem. Phys. 34, 193 (1978)

    Article  Google Scholar 

  12. M. Bacal, G.W. Hamilton, Phys. Rev. Lett. 42, 1538 (1979)

    Article  ADS  Google Scholar 

  13. J.R. Hiskes, J. Appl. Phys. 51, 4592 (1980)

    Article  ADS  Google Scholar 

  14. J.R. Hiskes, Appl. Phys. Lett. 69, 755 (1996)

    Article  ADS  Google Scholar 

  15. J.R. Hiskes, A.M. Karo, J. Appl. Phys. 56, 1927 (1984)

    Article  ADS  Google Scholar 

  16. J.R. Hiskes, A.M. Karo, Appl. Phys. Lett. 54, 508 (1989)

    Article  ADS  Google Scholar 

  17. J.N. Bardsley, J.M. Wadehra, Phys. Rev. A 20, 1398 (1979)

    Article  ADS  Google Scholar 

  18. J.M. Wadehra, Nonequilibrium vibrational kinetics—Topics, in Current Physics, vol. 39, ed. by M. Capitelli (Springer, Berlin, 1986), pp. 191–232

    Google Scholar 

  19. R. Celiberto, R.K. Janev, A. Laricchiuta, M. Capitelli, J.M. Wadehra, D.E. Atems, Atom. Data Nucl. Data Tables 77, 161 (2001)

    Article  ADS  Google Scholar 

  20. J. Bretagne, G. Delouya, C. Gorse, M. Capitelli, M. Bacal, J. Phys. D Appl. Phys. 18, 811 (1985)

    Article  ADS  Google Scholar 

  21. C. Gorse, R. Celiberto, M. Cacciatore, A. Laganà, M. Capitelli, Chem. Phys. 161, 211 (1992)

    Article  Google Scholar 

  22. C. Gorse, M. Capitelli, J. Bretagne, M. Bacal, Chem. Phys. 93, 1 (1985)

    Article  Google Scholar 

  23. C. Gorse, M. Capitelli, M. Bacal, J. Bretagne, A. Laganà, Chem. Phys. 117, 177 (1987)

    Article  Google Scholar 

  24. M. Capitelli et al., Nucl. Fusion 46, S260 (2006)

    Article  Google Scholar 

  25. A. Laricchiuta, R. Celiberto, F. Esposito, M. Capitelli, Plasma Sources Sci. Technol. 15, S62 (2006)

    Article  ADS  Google Scholar 

  26. R. Celiberto, M. Capitelli, U. Lamanna, Chem. Phys. 183, 101 (1994)

    Article  Google Scholar 

  27. L.H. Scarlett, J.K. Tapley, J.S. Savage, D.V. Fursa, M.C. Zammit, I. Bray, Plasma Sources Sci. Technol. 28, 025004 (2019)

    Article  ADS  Google Scholar 

  28. J. Hiskes, J. Appl. Phys. 70, 3409 (1991)

    Article  ADS  Google Scholar 

  29. J.K. Tapley, L.H. Scarlett, J.S. Savage, M.C. Zammit, D.V. Fursa, I. Bray, J. Phys. B Atom. Mol. Opt. Phys. 51, 144007 (2018)

    Article  ADS  Google Scholar 

  30. J.K. Tapley, L.H. Scarlett, J.S. Savage, D.V. Fursa, M.C. Zammit, I. Bray, Phys. Rev. A 98, 032701 (2018)

    Article  ADS  Google Scholar 

  31. G. Colonna, L.D. Pietanza, G. D’Ammando, R. Celiberto, M. Capitelli, A. Laricchiuta, Europ. Phys. J. D 71, 1 (2017)

    Article  Google Scholar 

  32. C.S. Trevisan, J. Tennyson, Plasma Phys. Control. Fusion 44, 1263 (2002)

    Article  ADS  Google Scholar 

  33. D.T. Stibbe, J. Tennyson, New J. Phys. 1, 2 (1998)

    Article  ADS  Google Scholar 

  34. T.N. Rescigno, B.I. Schneider, J. Phys. B Atom. Mol. Opt. Phys. 21, L691 (1988)

    Article  ADS  Google Scholar 

  35. M.A. Khakoo, J. Segura, J. Phys. B Atom. Mol. Opt. Phys. 27, 2355 (1994)

    Article  ADS  Google Scholar 

  36. M.A. Khakoo, S. Trajmar, R. McAdams, T.W. Shyn, Phys. Rev. A 35, 2832 (1987)

    Article  ADS  Google Scholar 

  37. H. Nishimura, A. Danjo, J. Phys. Soc. Jpn. 55, 3031 (1986)

    Article  ADS  Google Scholar 

  38. R. Celiberto et al., Plasma Sources Sci. Technol. 25, 033004 (2016)

    Article  ADS  Google Scholar 

  39. M. Zawadzki et al., Phys. Rev. A 98, 062704 (2018)

    Article  ADS  Google Scholar 

  40. R. Celiberto, R.K. Janev, V. Laporta, J. Tennyson, J.M. Wadehra, Phys. Rev. A 88, 062701 (2013)

    Article  ADS  Google Scholar 

  41. R. Celiberto, R. Janev, J. Wadehra, J. Tennyson, Chemical Physics, Special Issue Chemical Physics of Low-Temperature Plasmas (in honour of Prof Mario Capitelli) 398, 206 (2012)

  42. J. Horáček, M. Čížek, K. Houfek, P. Kolorenč, W. Domcke, Phys. Rev. A 73, 022701 (2006)

    Article  ADS  Google Scholar 

  43. J. Horáček, M. Čížek, K. Houfek, P. Kolorenč, W. Domcke, Phys. Rev. A 70, 052712 (2004)

    Article  ADS  Google Scholar 

  44. L.A. Pinnaduwage, W.X. Ding, D.L. McCorkle, S.H. Lin, A.M. Mebel, A. Garscadden, J. Appl. Phys. 85, 7064 (1999)

    Article  ADS  Google Scholar 

  45. K. Hassouni, A. Gicquel, M. Capitelli, Chem. Phys. Lett. 290, 502 (1998)

    Article  ADS  Google Scholar 

  46. F. Esposito, C. Gorse, M. Capitelli, Chem. Phys. Lett. 303, 636 (1999)

    Article  ADS  Google Scholar 

  47. F. Esposito, M. Capitelli, J. Phys. Chem. A 113, 15307 (2009)

    Article  Google Scholar 

  48. F. Esposito, C.M. Coppola, D. De Fazio, J. Phys. Chem. A 119, 12615 (2015)

    Article  Google Scholar 

  49. M. Capitelli, R. Celiberto, G. Colonna, F. Esposito, C. Gorse, K. Hassouni, A. Laricchiuta, S. Longo, Fundamental Aspects of Plasma Chemical Physics: Kinetics, vol. 85 (Springer Series on Atomic, Optical, and Plasma Physics, 2016)

  50. F. Esposito, Rendiconti Lincei. Scienze Fisiche e Naturali 30, 57 (2019)

    Article  ADS  Google Scholar 

  51. F. Esposito, R. Macdonald, I.D. Boyd, K. Neitzel, D.A. Andrienko, Heavy-particle elementary processes in hypersonic flows. in Hypersonic Meteoroid Entry Physics (IOP Publishing, 2019)

  52. W.H. Miller, J. Chem. Phys. 53, 3578 (1970)

    Article  ADS  Google Scholar 

  53. R. Götting, V. Herrero, J.P. Toennies, M. Vodegel, Chem. Phys. Lett. 137(5), 524 (1987)

    Article  ADS  Google Scholar 

  54. R.C. Forrey, Phys. Rev. A 88(4), 052709 (2013)

    Article  ADS  Google Scholar 

  55. R. Hall, I. Čadež, M. Landau, F. Pichou, C. Schermann, Phys. Rev. Lett. 60, 337 (1988)

    Article  ADS  Google Scholar 

  56. P.J. Eenshuistra, J.H.M. Bonnie, J. Los, H.J. Hopman, Phys. Rev. Lett. 60, 341 (1988)

    Article  ADS  Google Scholar 

  57. S. Béchu et al., J. Quant. Spect. Rad. Transf. 257, 107325 (2020)

    Article  Google Scholar 

  58. M. Cacciatore, M. Rutigliano, Plasma Sources Sci. Technol. 18, 023002 (2009)

    Article  ADS  Google Scholar 

  59. M. Cacciatore, M. Rutigliano, Phys. Scr. T124, 80 (2006)

    Article  ADS  Google Scholar 

  60. M. Rutigliano, M. Cacciatore, G.D. Billing, Chem. Phys. Lett. 340, 13 (2001)

    Article  ADS  Google Scholar 

  61. M. Cacciatore, M. Capitelli, G.D. Billing, Surf. Sci. 217, L391 (1989)

    Article  ADS  Google Scholar 

  62. W. Yang, A.V. Khrabrov, I.D. Kaganovich, Y.N. Wang, Plasma Sources Sci. Technol. 28, 10LT01 (2019)

    Article  Google Scholar 

  63. T. Mosbach, Plasma Sources Sci. Technol. 14, 610 (2005)

    Article  ADS  Google Scholar 

  64. D. Pagano, C. Gorse, M. Capitelli, IEEE Trans. Plasma Sci. 35, 1247 (2007)

    Article  ADS  Google Scholar 

  65. K.J. Chung, J.J. Dang, J.Y. Kim, W.H. Cho, Y.S. Hwang, New J. Phys. 18, 105006 (2016)

    Article  ADS  Google Scholar 

  66. A. Hatayama et al., New J. Phys. 20, 065001 (2018)

    Article  ADS  Google Scholar 

  67. S. Aleiferis, P. Svarnas, S. Béchu, O. Tarvainen, M. Bacal, Plasma Sources Sci. Technol. 27, 075015 (2018)

    Article  ADS  Google Scholar 

  68. J. Bretagne, G. Delouya, M. Capitelli, C. Gorse, M. Bacal, J. Phys. D Appl. Phys. 19, 1197 (1986)

    Article  ADS  Google Scholar 

  69. P. Eenshuistra, R. Heeren, A. Kleyn, H. Hopman, Phys. Rev. A 40, 3613 (1989)

    Article  ADS  Google Scholar 

  70. J. Bretagne, W.G. Graham, M.B. Hopkins, J. Phys. D Appl. Phys. 24, 668 (1991)

    Article  ADS  Google Scholar 

  71. C. Gorse, M. Bacal, R. Celiberto, M. Capitelli, Chem. Phys. Lett. 192, 161 (1992)

    Article  ADS  Google Scholar 

  72. D.A. Skinner, A.M. Bruneteau, P. Berlemont, C. Courtille, R. Leroy, M. Bacal, Phys. Rev. E 48, 2122 (1993)

    Article  ADS  Google Scholar 

  73. M. Bacal, M. Sasao, M. Wada, J. Appl. Phys. 129, 221101 (2021)

    Article  ADS  Google Scholar 

  74. M. Bacal, M. Wada, Plasma Sources Sci. Technol. 29, 033001 (2020)

    Article  ADS  Google Scholar 

  75. M. Bacal, M. Wada, Appl. Phys. Rev. 2, 021305 (2015)

    Article  ADS  Google Scholar 

  76. R. Agnello et al., Nucl. Fusion 60, 026007 (2020)

    Article  ADS  Google Scholar 

  77. M. Berger et al., Plasma Sources Sci. Technol. 18, 025004 (2009)

    Article  ADS  Google Scholar 

  78. S. Béchu et al., Phys. Plasmas 20, 101601 (2013)

    Article  ADS  Google Scholar 

  79. C. Marini et al., Nucl. Fusion 57(2), 36024 (2017)

    Article  Google Scholar 

  80. M. Bacal et al., Rev. Sci. Instrum. 75, 1699 (2004)

    Article  ADS  Google Scholar 

  81. N. de Oliveira et al., J. Synchrotron Radiat. 23, 887 (2016)

    Article  Google Scholar 

  82. O. Gabriel et al., Phys. Rev. E 78(1), 16407 (2008)

    Article  ADS  Google Scholar 

  83. J. Bentounes et al., Plasma Sources Sci. Technol. 27, 055015 (2018)

    Article  ADS  Google Scholar 

  84. S. Béchu et al., Appl. Phys. Lett. 111, 074103 (2017)

    Article  ADS  Google Scholar 

  85. H. Hosono, Jpn. J. Appl. Phys. 52, 090001 (2013)

    Article  ADS  Google Scholar 

  86. Y. Toda et al., Adv. Mater. 19, 3564 (2007)

    Article  Google Scholar 

  87. A. Ahmad et al., Plasma Sources Sci. Technol. 22, 025006 (2013)

    Article  ADS  Google Scholar 

  88. J.P.J. Dubois et al., J. Appl. Phys. 119, 193301 (2016)

    Article  ADS  Google Scholar 

  89. D. Kogut et al., Plasma Sources Sci. Technol. 26, 045006 (2017)

    Article  ADS  Google Scholar 

  90. G. Cartry et al., New J. Phys. 19, 025010 (2017)

    Article  ADS  Google Scholar 

  91. L. Schiesko et al., Appl. Phys. Lett. 95, 191502 (2009)

    Article  ADS  Google Scholar 

  92. L. Schiesko et al., Plasma Sources Sci. Technol. 19, 045016 (2010)

    Article  ADS  Google Scholar 

  93. D. Kogut et al., J. Phys. D Appl. Phys. 52, 435201 (2019)

    Article  ADS  Google Scholar 

  94. L. Schiesko et al., Plasma Sources Sci. Technol. 17, 035023 (2008)

    Article  ADS  Google Scholar 

  95. G. Cartry et al., Phys. Plasmas 19, 063503 (2012)

    Article  ADS  Google Scholar 

  96. A. Aanesland et al., IEEE Trans. Plasma Sci. 43, 321 (2015)

    Article  ADS  Google Scholar 

  97. D. Rafalskyi, S. Dudin, A. Aanesland, Rev. Sci. Instrum. 86, 053302 (2015)

    Article  ADS  Google Scholar 

  98. S.A. Fuselier et al., Space Sci. Rev. 146, 117 (2009)

    Article  ADS  Google Scholar 

  99. R. Friedl, U. Fantz, J. Appl. Phys. 122, 083304 (2017)

    Article  ADS  Google Scholar 

  100. A. Heiler et al., J. Vac. Sci. Technol. A39, 013002 (2021)

    Article  Google Scholar 

  101. A. Heiler et al, accepted on AIP conference series (2021)

  102. C. Wimmer, U. Fantz, NNBI-Team, J. Appl. Phys. 120, 073301 (2016)

  103. S. Aleiferis, O. Tarvanien, P. Svarnas, M. Bacal, S. Béchu, J. Phys. D Appl. Phys. 49, 095203 (2016)

    Article  ADS  Google Scholar 

  104. R. Gobin, P. Auvray, M. Bacal, J. Breton, O. Delferrière, F. Harrault, A.A. Ivanov Jr., P. Svarnas, O. Tuske, Nucl. Fusion 46, S281 (2006)

    Article  ADS  Google Scholar 

  105. S. Aleiferis, P. Svarnas, Rev. Sci. Instrum. 85(12), 123504 (2014)

    Article  ADS  Google Scholar 

  106. M. Bacal, Rev. Sci. Instrum. 71, 3981 (2000)

    Article  ADS  Google Scholar 

  107. W. Yang, S.N. Averkin, A.V. Khrabrov, I.D. Kaganovich, Y.-N. Wang, S. Aleiferis, P. Svarnas, Phys. Plasmas 25, 113509 (2018)

    Article  ADS  Google Scholar 

  108. D. Wagner, B. Dikmen, H.F. Döbele, Plasma Sources Sci. Technol. 7, 462 (1998)

    Article  ADS  Google Scholar 

  109. K.A. Miller, H. Bruhns, M. Čížek, J. Eliášek, R. Cabrera-Trujillo, H. Kreckel, A.P. O’Connor, X. Urbain, D.W. Savin, Phys. Rev. A 86, 032714 (2012)

    Article  ADS  Google Scholar 

  110. W. Kraus et al., Rev. Sci. Instrum. 83, 02B104 (2012)

    Article  Google Scholar 

  111. J. Peters, Rev. Sci. Instrum. 79, 02A515 (2008)

    Google Scholar 

  112. D. Wunderlich et al., Plasma Sources Sci. Technol. 23, 015008 (2014)

    Article  ADS  Google Scholar 

  113. G. Serianni et al., New J. Phys. 19, 045003 (2017)

    Article  ADS  Google Scholar 

  114. M.P. Stockli et al., AIP Conference Proceedings, vol. 1390 (2011), p. 123

  115. G. Chitarin et al., Rev. Sci. Instrum. 85, 02B317 (2014)

    Article  Google Scholar 

  116. M. Cavenago, P. Veltri, Plasma Sources Sci. Technol. 23, 065024 (2014)

    Article  ADS  Google Scholar 

  117. A. Hatayama, Rev. Sci. Instrum. 79, 02B901 (2008)

    Article  Google Scholar 

  118. S.H. Song et al., Phys. Plasmas 21, 093512 (2014)

    Article  ADS  Google Scholar 

  119. F.F. Chen, IEEE Trans. Plasma Sci. 34, 718 (2006)

    Article  ADS  Google Scholar 

  120. M. Cavenago, AIP Conference Proceedings, vol. 2052 (2018), p. 020001

  121. M. Cavenago et al., AIP Conference Proceedings, vol. 2052 (2018), p. 040013

  122. M. Cavenago et al., Rev. Sci. Instrum. 91, 013316 (2020)

    Article  ADS  Google Scholar 

  123. M. Barbisan et al., Rev. Sci. Instrum. 85, 02A708 (2014)

    Article  Google Scholar 

  124. M. Ugoletti et al, to appear in Rev Sci Instrum

  125. J. Palak et al., IEEE Access 6, 29665 (2018)

    Article  Google Scholar 

  126. V. Variale et al., Rev. Sci. Instrum. 91, 013516 (2020)

    Article  ADS  Google Scholar 

  127. M. Cavenago et al., Progress on NIO1 ion source and on energy recover tests, to be presented at IAEA-FEC (2020-2021)

  128. M. Cavenago, S. Petrenko, Rev. Sci. Instrum. 83, 02B503 (2012). (and references therein)

  129. I. Furno et al., EPJ Web of Conferences, vol. 157 (2017), p. 03014

  130. Ph. Guittienne et al, submitted to Plasma Sources, Sci. Technol

  131. R. Agnello et al., Rev. Sci. Instrum. 89, 103504 (2018)

    Article  ADS  Google Scholar 

  132. R. Agnello et al., Nucl. Fusion 60, 026007 (2020)

    Article  ADS  Google Scholar 

  133. R. Jacquier et al., Fusion Eng. Des. 146, 1140 (2019)

    Article  Google Scholar 

  134. S. Lishev et al., Plasma Sources Sci. Technol. 27, 125008 (2018)

    Article  ADS  Google Scholar 

  135. G. Hagelaar et al., Plasma Sources Sci. Technol. 20, 015001 (2011)

    Article  ADS  Google Scholar 

  136. J.P. Boeuf et al., Plasma Sources Sci. Technol. 20, 015002 (2011)

    Article  ADS  Google Scholar 

  137. G. Fubiani et al., New J. Phys. 19, 015002 (2017)

    Article  ADS  Google Scholar 

  138. F. Taccogna et al., Plasma Sources Sci. Technol. 20(1), 024009 (2011)

    Article  ADS  Google Scholar 

  139. F. Taccogna, P. Minelli, New J. Phys. 19, 015012 (2017)

    Article  ADS  Google Scholar 

  140. G. Fubiani et al., Plasma Sources Sci. Technol. 24, 055001 (2015)

    Article  ADS  Google Scholar 

  141. R.K. Janev, Elementary Processes in Hydrogen–Helium Plasmas (Springer, Berlin, 1987)

    Book  Google Scholar 

  142. R. McAdam et al., Plasma Sources Sci. Technol. 20, 035023 (2011)

    Article  ADS  Google Scholar 

  143. G. Fubiani et al., Phys. Plasmas 20, 113511 (2013)

    Article  ADS  Google Scholar 

  144. P. McNeely et al., Plasma Sources Sci. Technol. 20, 045005 (2011)

    Article  ADS  Google Scholar 

  145. Seidl et al., J. Appl. Phys. 79, 2896 (1996)

  146. S. Geng et al., Fusion Eng. Des. 123, 481 (2017)

    Article  Google Scholar 

  147. M. Kashiwagi et al., Rev. Sci. Instrum. 85, 02B320 (2014)

    Article  Google Scholar 

  148. G. Fubiani et al., Phys. Plasmas 25, 023510 (2018)

    Article  ADS  Google Scholar 

  149. Fubiani et al., Phys. Plasmas 27, 093506 (2020)

    Article  ADS  Google Scholar 

  150. Y.Y. Liu, J.J. Slotine, A.L. Barabasi, Nature 473, 167 (2011)

    Article  ADS  Google Scholar 

  151. R.E. Kálmán, J. SIAM 1, 152 (1963)

    Google Scholar 

  152. C. Lin, IEEE Trans. Autom. Control 19, 3 (1974)

    ADS  Google Scholar 

  153. G. Chitarin et al, in press on Fusion Engineering and Design

  154. R.H. Fowler, L. Nordheim, Proc. R. Soc. Lond. A119, 781 (1928)

    Google Scholar 

  155. E. Spada et al., to appear on IEEE Trans. Plasma Sci

  156. V. Antoni et al., Rendiconti Lincei. Scienze Fisiche e Naturali 30(2019), 277–285 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of Sect. 2.2 was carried out within the framework of the French Federation for Magnetic Fusion Studies (FR-FCM) and received some funding from FR-FCM. Concerning Sect. 2.3, the C12A7-Electride was supplied from AGC Inc. The authors would like to thank H. Hosono for the use of C12A7-Electride and technical support by Naomichi Miyakawa, Satoru Watanabe, and Kazuho of AGC Inc. It has also received funding from the Excellence Initiative of Aix-Marseille University-A*Midex, a French “Investissements d’Avenir programme” AMX-19-IET-013. The work presented in Sect. 3.1 was partially supported by the “Andreas Mentzelopoulos” Ph.D. Scholarships of the University of Patras (M. Mitrou). Work presented in Sect. 3.2 set up in collaboration and financial support of INFN (project INFN-E and Group 5, experiments Plasma4beam and Ion2neutral). Work presented in Sect. 3.2 gratefully acknowledges the financial support of the Swiss National Science Foundation and the mechanical and electronic workshops of the Swiss Plasma Center for their collaboration. For the work presented in Sect. 4.1, authors gratefully acknowledge financial support of the Commissariat à l”Energie Atomique (CEA) and the French Fédération de Recherche sur la Fusion Magnétique (FR-FCM). In addition, works reported in Sects. 2.2, 2.3, 3.2, 3.3 and 4.1.3 have also been carried out within the framework of the EUROfusion Consortium and have received funding from the Euratom research and training program 2014–2018 and 2019–2020 under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the paper.

Corresponding author

Correspondence to F. Taccogna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taccogna, F., Bechu, S., Aanesland, A. et al. Latest experimental and theoretical advances in the production of negative ions in caesium-free plasmas. Eur. Phys. J. D 75, 227 (2021). https://doi.org/10.1140/epjd/s10053-021-00228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00228-y

Navigation