Skip to main content
Log in

Cylindrical and spherical ion acoustic shock waves with two temperature superthermal electrons in dusty plasma

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In the present study, the cylindrical/spherical ion acoustic shock waves have been investigated in unmagnetized dusty plasma consisting of positive ions, immobile dust particles and kappa distributed cold and hot electrons. A multiple scale expansion method is employed to derive Burgers equation (BE) and modified Burgers equation (MBE) by including higher order nonlinearity. The basic characeristics of the shock waves have been analyzed numerically and graphically for different physical parameters relevant to space and laboratory dusty plasma environments through 2D figures. We show that the amplitude of the wave decreases faster as one departs away from the axis of the cylinder or centre of the sphere. Such decaying behaviour continues as time progresses. Furthermore, the parametric dependence of wave properties (amplitude, width) on kappa index, density and temperature of cold and hot electrons, concentration of dust particles, thermal effects and kinematic viscosity of ions has been studied in detail and findings obtained here will be beneficial to further astrophysical investigations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.K. Shukla, Phys. Plasmas 8, 1791 (2001).

    Article  ADS  Google Scholar 

  2. M.G.M. Anowar, A.A. Mamun, IEEE Trans. Plasma Sci. 37, 1638 (2009).

    Article  ADS  Google Scholar 

  3. W.F. El-Taibany, M. Wadati, R. Sabry, Phys. Plasmas 14, 032304 (2007).

    Article  ADS  Google Scholar 

  4. V.N. Tsytovich, G.E. Morfill, H. Thomas, Plasma Phys. Rep. 28, 623 (2002).

    Article  ADS  Google Scholar 

  5. P.K. Shukla, B. Eliasson, Rev. Mod. Phys. 81, 25 (2002).

    Article  ADS  Google Scholar 

  6. O. Havnes, L.I. Naesheim, T.W. Morfill, F. Melandso, B. Schleicher, J. Troim, T. Blix, E. Thrane, Planet Space Sci. 44, 1191 (1992).

    Article  ADS  Google Scholar 

  7. O. Havnes, L.I. Næsheim, T.W. Hartquist, G.E. Morfill, F. Melandsø, B. Schleicher, E. Thrane, Planet. Space Sci. 44, 1191 (1996).

    Article  ADS  Google Scholar 

  8. F. Verheest, Space Sci. Rev. 77, 267 (1996).

    Article  ADS  Google Scholar 

  9. P.K. Shukla, V.P. Silin, Phys. Scr. 45, 508 (2002).

    Article  ADS  Google Scholar 

  10. A. Barkan, N. D’Angelo, R.L. Merlino, Planet. Space Sci. 44, 239 (1996).

    Article  ADS  Google Scholar 

  11. Y. Nakamura, H. Bailung, P.K. Shukla, Phys. Rev. Lett. 83, 1602 (1999).

    Article  ADS  Google Scholar 

  12. Q.-Z. Luo, N. D’Angelo, R.L. Merlino, Phys. Plasmas 5, 2868 (1998).

    Article  ADS  Google Scholar 

  13. A.A. Mamun, P.K. Shukla, Europhys. Lett. 87, 25001 (2009).

    Article  ADS  Google Scholar 

  14. B. Eliasson, P.K. Shukla, Phys. Plasmas 12, 024502 (2005).

    Article  ADS  Google Scholar 

  15. P.K. Shukla, Phys. Plasmas 7, 1044 (2002).

    Article  ADS  Google Scholar 

  16. A. Rahman, F. Sayed, A.A. Mamun, Phys. Plasmas 14, 034503 (2007).

    Article  ADS  Google Scholar 

  17. L.E. Akpabio, A.D. Anita, Int. J. Astro. Space Sci. 3, 55 (2015).

    Google Scholar 

  18. J.K. Xue, Phys. Plasmas 10, 4893 (2003).

    Article  ADS  Google Scholar 

  19. A. Bebri, M. Tribeche, J. Plasma Phys. 75, 587 (2009).

    Article  ADS  Google Scholar 

  20. A.A. Mamun, P.K. Shukla, , AIP Conf. Proc. 1397, 30 (2011).

    Article  ADS  Google Scholar 

  21. M.Y. Yu, H. Luo, Phys. Plasmas 15, 024504 (2008).

    Article  ADS  Google Scholar 

  22. G. Gloeckler, J. Geiss, H. Balsiger, P. Bedini, J.C. Cain, J. Fischer, L.A. Fisk, A.B. Calvin, F. Gliern, D.C. Hamilton, J.V. Hollweg, F.M. Ipavich, R. Joos, S. Livi, R. Lundgren, U. Mall, J.F. McKenzie, K.W. Ogilvie, F. Ottens, W. Rieck, E.O. Tums, R. Von Steiger, W. Weiss, B. Wilken, , Astron. Astrophys. Suppl. Ser 92, 267 (1992).

    ADS  Google Scholar 

  23. E.E. Antonova, N.O. Ermakova, Adv. Space Res. 42, 987 (2008).

    Article  ADS  Google Scholar 

  24. J.P. Mcfadden, C.W. Carlson, R.E. Ergun, F.S. Mozer, L. Muschietti, I. Roth, E. Moebius, J. Geophys. Res. 108, 8018 (2003).

    Article  Google Scholar 

  25. R. Bharuthram, P.K. Shukla, Planet. Space Sci. 40, 973 (1992).

    Article  ADS  Google Scholar 

  26. S. Ullah, W. Masood, M. Siddiq, Eur. Phys. J. D 74, 26 (2020).

    Article  ADS  Google Scholar 

  27. A. Esfandyari-Kalejahi, H. Asgari, Phys. Plasmas 12, 102302 (2005).

    Article  ADS  Google Scholar 

  28. T.S. Gill, H. Kaur, S. Bansal, N.S. Saini, P. Bala, Eur. Phys. J. D 41, 151 (2006).

    Article  ADS  Google Scholar 

  29. N.S. Saini, P. Sethi, Phys. Plasmas 23, 103702 (2016).

    Article  ADS  Google Scholar 

  30. S. Bansal, T.S. Gill, M. Aggarwal, Phys. Plasmas 26, 072116 (2019).

    Article  ADS  Google Scholar 

  31. S. Bansal, M. Aggarwal, Plasma Phys. Rep. 45, 991 (2019).

    Article  ADS  Google Scholar 

  32. M.M. Masud, M. Asaduzzaman, A.A. Mamun, J. Plasma Phys. 79, 215 (2012).

    Article  ADS  Google Scholar 

  33. M.M. Masud, S. Sultana, A.A. Mamun, Astrophys. Space Sci. 348, 99 (2013).

    Article  ADS  Google Scholar 

  34. M.S. Alam, M.M. Masud, A.A. Mamun, Chin. Phys. B 22, 115202 (2013).

    Article  ADS  Google Scholar 

  35. B.A. Finlayson, The method of weighted residuals and variational principles (Academin, New York, 1972).

  36. M.R. Hossen, S.A. Ema, A.A. Mamun, Chin. Phys. Lett. 33, 065203 (2016).

    Article  ADS  Google Scholar 

  37. W. Malfliet, J. Comput. Appl. Math. 164–165, 529 (2002).

    MathSciNet  Google Scholar 

  38. A. Usachev, A. Zobnin, O. Petrov, V. Fortov, M.H. Thoma, H. Hofner, M. Fink, A. Ivlev, G. Morfill, New J. Phys. 16, 053028 (2014).

    Article  ADS  Google Scholar 

  39. S.K. Sharma, A. Bourah, Y. Nakumura, H. Bailing, Phys. Plasmas 23, 053703 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sona Bansal.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, S., Aggarwal, M. & Gill, T.S. Cylindrical and spherical ion acoustic shock waves with two temperature superthermal electrons in dusty plasma. Eur. Phys. J. D 74, 236 (2020). https://doi.org/10.1140/epjd/e2020-10316-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10316-0

Keywords

Navigation