Skip to main content
Log in

Fragmentation processes of ionized 5-fluorouracil in the gas phase and within clusters

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have measured mass spectra for positive ions produced from neutral 5-fluorouracil by electron impact at energies from 0 to 100 eV. Fragment ion appearance energies of this (radio-)chemotherapy agent have been determined for the first time and we have identified several new fragment ions of low abundance. The main fragmentations are similar to uracil, involving HNCO loss and subsequent HCN loss, CO loss, or FCCO loss. The features adjacent to these prominent peaks in the mass spectra are attributed to tautomerization preceding the fragmentation and/or the loss of one or two additional hydrogen atoms. A few fragmentions are distinct for 5-fluorouracil compared to uracil, most notably the production of the reactive moiety CF+. Finally, multiphoton ionization mass spectra are compared for 5-fluorouracil from a laser thermal desorption source and from a supersonic expansion source. The detection of a new fragment ion at 114 u in the supersonic expansion experiments provides the first evidence for a clustering effect on the radiation response of 5-fluorouracil. By analogy with previous experiments and calculations on protonated uracil, this is assigned to NH3 loss from protonated 5-fluorouracil.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Byfield, Invest. New Drugs 7, 111 (1989)

    Google Scholar 

  2. G.D. Wilson, S.M. Bentzen, P.M. Harari, Semin. Radiat. Oncol. 16, 2 (2006)

    Google Scholar 

  3. R. Schürmann, S. Vogel, K. Ebel, I. Bald, Chem. Eur. J. 24, 10271 (2018)

    Google Scholar 

  4. L. Sanche, Eur. Phys. J. D 35, 367 (2005)

    ADS  Google Scholar 

  5. G. Garca Gómez-Tejedor, M.C. Fuss, Radiation Damage in Biomolecular Systems (Springer, 2012)

  6. I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)

    ADS  Google Scholar 

  7. E. Alizadeh, T.M. Orlando, L. Sanche, Annu. Rev. Phys. Chem. 66, 379 (2015)

    ADS  Google Scholar 

  8. The 5-fluorouracil mass spectrum in the NIST (USA) Chemistry WebBook, http://webbook.nist.gov/, Accessed June 2019

  9. J.-P. Champeaux, P. Çarçabal, J. Rabier, P. Cafarelli, M. Sencea, P. Moretto-Capelle, Phys. Chem. Chem. Phys. 12, 5454 (2010)

    Google Scholar 

  10. J. Tabet, S. Eden, S. Feil, H. Abdoul-Carime, B. Farizon, M. Farizon, S. Ouaskit, T.D. Märk, Int. J. Mass Spectrom. 292, 53 (2010)

    Google Scholar 

  11. S. Denifl, S. Ptasińska, B. Gstir, P. Scheier, T.D. Märk, Int. J. Mass Spectrom. 232, 99 (2004)

    Google Scholar 

  12. J. Ulrich, R. Teoule, R. Massot, A. Cornu, Organic Mass Spectrom. 2, 1183 (1969)

    Google Scholar 

  13. M. Imhoff, Z. Deng, M.A. Huels, Int. J. Mass Spectrom. 262, 154 (2007)

    Google Scholar 

  14. E. Itälä, D.T. Ha, K. Kooser, E. Rachlew, M.A. Huels, E. Kukk, J. Chem. Phys. 133, 154316 (2010)

    ADS  Google Scholar 

  15. E. Itälä, D.T. Ha, K. Kooser, M.A. Huels, E. Rachlew, E. Nõmmiste, U. Joost, E. Kukk, J. Electron. Spectrosc. Relat. Phenom. 184, 119 (2011)

    Google Scholar 

  16. M.-C. Bacchus-Montabonel, Y.S. Tergiman, Chem. Phys. Lett. 503, 45 (2011)

    ADS  Google Scholar 

  17. M.-C. Bacchus-Montabonel, Y.S. Tergiman, D. Talbi, Phys. Rev. A 79, 012710 (2009)

    ADS  Google Scholar 

  18. R. Delaunay, J.-P. Champeaux, S. Maclot, M. Capron, A. Domaracka, A. Méry, B. Manil, L. Adoui, P. Rousseau, P. Moretto-Capelle, B.A. Huber, Eur. Phys. J. D 68, 68 (2014)

    Google Scholar 

  19. M.C. Castrovilli, P. Markush, P. Bolognesi, P. Rousseau, S. Maclot, A. Cartoni, R. Delaunay, A. Domaracka, J. Kočišek, B.A. Huber, L. Avaldi, Phys. Chem. Chem. Phys. 19, 19807 (2017)

    Google Scholar 

  20. R. Abouaf, J. Pommier, H. Dunet, Chem. Phys. Lett. 381, 486 (2003)

    ADS  Google Scholar 

  21. J. Rackwitz, M. Lj, A.R. Ranković, I.Bald Milosavljević, Eur. Phys. J. D 71, 32 (2017)

    ADS  Google Scholar 

  22. R. Abouaf, H. Dunet, Eur. Phys. J. D 35, 405 (2005)

    ADS  Google Scholar 

  23. F. Ferreira da Silva, D. Almeida, R. Antunes, G. Martins, Y. Nunes, S. Eden, G. Garcia, P. Limão-Vieira, Phys. Chem. Chem. Phys. 13, 21621 (2011)

    Google Scholar 

  24. P.J.M. van der Burgt, Eur. J. Phys. D 68, 135 (2014)

    ADS  Google Scholar 

  25. P.J.M. van der Burgt, F. Mahon, G. Barrett, M.L. Gradziel, Eur. J. Phys. D 68, 151 (2014)

    ADS  Google Scholar 

  26. P.J.M. van der Burgt, S. Finnegan, S. Eden, Eur. J. Phys. D 69, 173 (2015)

    ADS  Google Scholar 

  27. B. Barc, M. Ryszka, J. Spurrell, M. Dampc, P. Limão-Vieira, R. Parajuli, N.J. Mason, S. Eden, J. Chem. Phys. 139, 244311 (2013)

    ADS  Google Scholar 

  28. O. Ghafur, S. Crane, M. Ryszka, J. Bockova, A. Rebelo, L. Saalbach, S. De Camillis, J. Greenwood, S. Eden, D. Townsend, J. Chem. Phys. 149, 034301 (2018)

    ADS  Google Scholar 

  29. S. De Camillis, J. Miles, G. Alexander, O. Ghafur, I.D. Williams, D. Townsend, J.B. Greenwood, Phys. Chem. Chem. Phys. 17, 23643 (2015)

    Google Scholar 

  30. Y. Itikawa, N. Mason, J. Phys. Chem. Ref. Data 34, 1 (2005)

    ADS  Google Scholar 

  31. J.M. Rice, G.O. Dudek, M. Barber, J. Am. Chem. Soc. 87, 4569 (1956)

    Google Scholar 

  32. S. Denifl, B. Sonnweber, G. Hanel, P. Scheier, T.D. Märk, Int. J. Mass Spectrom. 238, 471 (2004)

    Google Scholar 

  33. M.A. Rahman, E. Krishnakumar, Int. J. Mass Spectrom. 392, 145 (2015)

    Google Scholar 

  34. M. Imhoff, Z. Deng, M.A. Huels, Int. J. Mass Spectrom. 245, 68 (2005)

    Google Scholar 

  35. N. Markova, V. Enchev, I. Timtcheva, J. Phys. Chem. A 109, 1981 (2005)

    Google Scholar 

  36. D.M.P. Holland, A.W. Potts, L. Karlsson, I.L. Zaytseva, A.B. Trofimov, J. Schirmer, Chem. Phys. 352, 205 (2008)

    Google Scholar 

  37. H.-W. Jochims, M. Schwell, H. Baumgärtel, S. Leach, Chem. Phys. 314, 263 (2005)

    Google Scholar 

  38. C. Zhou, S. Matsika, M. Kotur, T.C. Weinacht, J. Phys. Chem. A 116, 9217 (2012)

    Google Scholar 

  39. C.A. Bauer, S. Grimme, Eur. J. Mass Spectrom. 21, 125 (2015)

    Google Scholar 

  40. M. Barbatti, A.J.A. Aquino, H. Lischka, Phys. Chem. Chem. Phys. 12, 4959 (2010)

    Google Scholar 

  41. S. Ullrich, T. Schultz, M.Z. Zgierski, A. Stolow, J. Am. Chem. Soc. 126, 2262 (2004)

    Google Scholar 

  42. S. Yamazaki, T. Taketsugu, J. Phys. Chem. A 116, 491 (2012)

    Google Scholar 

  43. M. Ligare, F. Siouri, O. Bludsky, D. Nachtigallová, M.S. de Vries, Phys. Chem. Chem. Phys. 17, 24336 (2015)

    Google Scholar 

  44. M.Z. Zgierski, S. Patchkovskii, T. Fujiwara, E.C. Lim, J. Phys. Chem. A. 109, 9384 (2005)

    Google Scholar 

  45. R. Pandey, M. Ryszka, T. da Fonseca Cunha, M. Lalande, M. Dampc, P. Limão-Vieira, N.J. Mason, J.-C. Poully, S. Eden, Chem. Phys. Lett. 648, 233 (2017)

    ADS  Google Scholar 

  46. M. Ryszka, R. Pandey, C. Rizk, J. Tabet, B. Barc, M. Dampc, N.J. Mason, S. Eden, Int. J. Mass. Spectrom. 396, 48 (2016)

    Google Scholar 

  47. A.A. Zadorozhnaya, A.I. Krylov, J. Chem. Theory Comput. 6, 705 (2010)

    Google Scholar 

  48. L. Sadr-Arani, P. Mignon, H. Chermette, Th Douki, Chem. Phys. Lett. 605–606, 108 (2014)

    ADS  Google Scholar 

  49. N. Ding, X. Chen, C.-M.L. Wu, H. Li, Phys. Chem. Chem. Phys. 15, 10767 (2013)

    Google Scholar 

  50. D.G. Beach, W. Gabryelski, J. Am. Soc. Mass Spectrom. 23, 858 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. M. van der Burgt.

Additional information

Contribution to the Topical Issue “Dynamics of Systems on the Nanoscale (2018)”, edited by Ilko Bald, Ilia A. Solov’yov, Nigel J. Mason and Andrey V. Solov’yov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Burgt, P.J.M., Brown, M.A., Bockova, J. et al. Fragmentation processes of ionized 5-fluorouracil in the gas phase and within clusters. Eur. Phys. J. D 73, 184 (2019). https://doi.org/10.1140/epjd/e2019-100107-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100107-7

Keywords

Navigation