Skip to main content
Log in

The effect of non-Markovianity on the measurement-based uncertainty

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The uncertainty principle is one of fundamental traits in quantum mechanics, which essentially lies at the heart of quantum theory. The principle manifests that the measurement outcomes with respect to two incompatible observables cannot be predicted accurately. In fact, it can be expressed in terms of entropic measurement in the quantum information theory, since Berta et al. have indicated that uncertainty’s bound can be reduced when considering a particle as a quantum memory correlated with the particle to be measured. In this paper, we investigate the dynamical features of the entropic uncertainty within the non-Markovian regimes, and also compare several proposed bounds in such a scenario. We find that the uncertainty exhibits a non-monotonic behavior, and certify that the lower bound proposed by Adabi et al. is optimized. Besides, Stimulatingly, it turns out that the lower bound is not fully anti-correlated with the quantum correlation of the system, and associated with the A’s minimal conditional entropy \( {S}_{\mathrm{min}}^{A|B}\). Besides, we offer a possible physical explanation for this behavior. Noteworthily, we propose a simple and working approach to manipulate the magnitude of the measurement uncertainty via a type of non-unitary operations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Heisenberg, Z. Phys. 43, 172 (1927)

    Article  ADS  Google Scholar 

  2. H.P. Robertson, Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  3. E.H. Kennard, Z. Phys. 44, 326 (1927)

    Article  ADS  Google Scholar 

  4. K. Kraus, Phys. Rev. D 35, 3070 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  5. I. Bialynicki-Birula, AIP. Conf. Proc. 889, 52 (2006)

    Article  ADS  Google Scholar 

  6. D. Deutsch, Phys. Rev. Lett. 50, 631 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Liu, L.Z. Mu, H. Fan, Phys. Rev. A 91, 042133 (2015)

    Article  ADS  Google Scholar 

  8. L. Rudnicki, Phys. Rev. A 91, 032123 (2015)

    Article  ADS  Google Scholar 

  9. A.E. Rastegin, Ann. Phys. (Berlin) 528, 835 (2016)

    Article  ADS  Google Scholar 

  10. T. Pramanik, S. Mal, A.S. Majumdar, Quantum Inf. Process. 15, 981 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. L. Xiao, K. Wang, X. Zhan, Z. Bian, J. Li, Y. Zhang, P. Xue, A.K. Pati, Opt. Exp. 25, 17904 (2017)

    Article  ADS  Google Scholar 

  12. H. Maassen, J.B.M. Uffink, Phys. Rev. Lett. 60, 1103 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Berta, M. Christandl, R. Colbeck, J.M. Renes, R. Renner, Nat. Phys. 6, 659 (2010)

    Article  Google Scholar 

  14. C.F. Li, J.S. Xu, X.Y. Xu, K. Li, G.C. Guo, Nat. Phys. 7, 752 (2011)

    Article  Google Scholar 

  15. R. Prevedel, D.R. Hamel, R. Colbeck, K. Fisher, K.J. Resch, Nat. Phys. 7, 757 (2011)

    Article  Google Scholar 

  16. M. Tomamichel, R. Renner, Phys. Rev. Lett. 106, 110506 (2011)

    Article  ADS  Google Scholar 

  17. J.M. Renes, J.C. Boileau, Phys. Rev. Lett. 103, 020402 (2009)

    Article  ADS  Google Scholar 

  18. L. Li, Q.W. Wang, S.Q. Shen, M. Li, Quantum Inf. Process. 16, 188 (2017)

    Article  ADS  Google Scholar 

  19. Z.Y. Zhang, D.X. Wei, J.M. Liu, Laser Phys. Lett. 15, 065207 (2018)

    Article  ADS  Google Scholar 

  20. M. Yu, M.F. Fang, Quantum Inf. Process. 16, 213 (2017)

    Article  ADS  Google Scholar 

  21. H.M. Zou, M.F. Fang, B.Y. Yang, Y.N. Guo, W. He, S.Y. Zhang, Phys. Scr. 89, 115101 (2014)

    Article  ADS  Google Scholar 

  22. J. Zhang, Y. Zhang, C.S. Yu, Sci. Rep. 5, 11701 (2015)

    Article  ADS  Google Scholar 

  23. J. Zhang, Y. Zhang, C.S. Yu, Quantum Inf. Process. 14, 2239 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Hertz, L. Vanbever, N.J. Cerf, Phys. Rev. A 97, 012111 (2018)

    Article  ADS  Google Scholar 

  25. D. Wang, F. Ming, A.J. Huang, W.Y. Sun, L. Ye, Laser Phys. Lett. 14, 095204 (2017)

    Article  ADS  Google Scholar 

  26. D. Wang, A.J. Huang, R.D. Hoehn, F. Ming, W.Y. Sun, J.D. Shi, L. Ye, S. Kais, Sci. Rep. 7, 1066 (2017)

    Article  ADS  Google Scholar 

  27. R. Schwonnek, L. Dammeier, R.F. Werner, Phys. Rev. Lett. 119, 170404 (2017)

    Article  ADS  Google Scholar 

  28. Z.M. Huang, Quantum Inf. Process. 17, 73 (2018)

    Article  ADS  Google Scholar 

  29. X. Zheng, G.F. Zhang, Quantum Inf. Process. 16, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. J.Q. Li, L. Bai, J.Q. Liang, Quantum Inf. Process. 17, 206 (2018)

    Article  ADS  Google Scholar 

  31. J. Schneeloch, G.A. Howland, Phys. Rev. A 97, 042338 (2018)

    Article  ADS  Google Scholar 

  32. D. Wang, F. Ming, A.J. Huang, W.Y. Sun, J.D. Shi, L. Ye, Laser Phys. Lett. 14, 055205 (2017)

    Article  ADS  Google Scholar 

  33. J.L. Huang, W.C. Gan, Y.L. Xiao, F.W. Shu, M.H. Yung, Eur. Phys. J. C 78, 545 (2018)

    Article  ADS  Google Scholar 

  34. A.J. Huang, D. Wang, J.M. Wang, J.D. Shi, W.Y. Sun, L. Ye, Quantum Inf. Process. 16, 204 (2017)

    Article  ADS  Google Scholar 

  35. D. Kurzyk, Ł. Pawela, Z. Puchała, Quantum Inf. Process. 17, 193 (2018)

    Article  ADS  Google Scholar 

  36. D. Wang, W.N. Shi, R.D. Hoehn, F. Ming, W.Y. Sun, S. Kais, L. Ye, Ann. Phys. (Berlin) 530, 1800080 (2018)

    Article  ADS  Google Scholar 

  37. Y.N. Guo, M.F. Fang, K. Zeng, Quantum Inf. Process. 17, 187 (2018)

    Article  ADS  Google Scholar 

  38. P.J. Coles, R. Colbeck, L. Yu, M. Zwolak, Phys. Rev. Lett. 108, 210405 (2012)

    Article  ADS  Google Scholar 

  39. A.K. Pati, M.M. Wilde, A.R.U. Devi, A.K. Rajagopal, Phys. Rev. A 86, 042105 (2012)

    Article  ADS  Google Scholar 

  40. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  41. M.L. Hu, H. Fan, Phys. Rev. A 88, 014105 (2013)

    Article  ADS  Google Scholar 

  42. M.L. Hu, X.Y. Hu, J.C. Wang, Y. Peng, Y.R. Zhang, H. Fan, Phys. Rep. 762–764, 1 (2018)

    Google Scholar 

  43. S.L. Luo, Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  44. F. Adabi, S. Salimi, S. Haseli, Phys. Rev. A 93, 062123 (2016)

    Article  ADS  Google Scholar 

  45. Z.X. Man, Y.J. Xia, R. Lo Franco, Sci. Rep. 5, 13843 (2015)

    Article  ADS  Google Scholar 

  46. Z.X. Man, Y.J. Xia, R. Lo Franco, Phys. Rev. A 92, 012315 (2015)

    Article  ADS  Google Scholar 

  47. A. Mortezapour, M.A. Borji, R. Lo Franco, Laser Phys. Lett. 14, 055201 (2017)

    Article  ADS  Google Scholar 

  48. R. Lo Franco, New J. Phys. 17, 081004 (2015)

    Article  ADS  Google Scholar 

  49. Y. Aharonov, D.Z. Albert, L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  50. S.C. Wang, Z.W. Yu, W.J. Zou, X.B. Wang, Phys. Rev. A 89, 022318 (2014)

    Article  ADS  Google Scholar 

  51. X. Xiao, Y.L. Li, Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, PF., Ye, L. & Wang, D. The effect of non-Markovianity on the measurement-based uncertainty. Eur. Phys. J. D 73, 108 (2019). https://doi.org/10.1140/epjd/e2019-100013-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100013-0

Keywords

Navigation