Skip to main content

Advertisement

Log in

Enhanced energy transfer efficiency in a four-electrodes configuration DBD plasma jet

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this work a dielectric barrier discharge (DBD) plasma jet that uses a multiple electrodes configuration is investigated. The results show that both plasma power and its rotational and vibrational temperatures tend to increase with the number of powered electrodes in the DBD device. The emission intensities of the excited species in the plasma, and consequently their number density, also grow as a function of the number of powered electrodes. Based on these facts and since the electric power provided by the power supply was kept constant, there is an indication that the use of multiple electrodes improves the energy efficiency of the device.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.V. Penkov, M. Khadem, W.-S. Lim, D.-E. Kim, J. Coat. Technol. Res. 12, 225 (2015)

    Article  Google Scholar 

  2. K.-D. Weltmann, Th. von Woedtke, Plasma Phys. Control. Fusion, 59, 012031 (2017)

    Article  Google Scholar 

  3. S. Wu, Y. Cao, X. Lu, IEEE Trans. Plasma Sci. 44, 134 (2016)

    Article  ADS  Google Scholar 

  4. J. Winter, R. Brandenburg, K.-D. Weltmann, Plasma Sources Sci. Technol. 24, 064001 (2015)

    Article  ADS  Google Scholar 

  5. H.R. Kang, T.H. Chung, H.M. Joh, S.J. Kim, IEEE Trans. Plasma Sci. 45, 691 (2017)

    Article  ADS  Google Scholar 

  6. T. Abuzairi, M. Okada, S. Bhattacharjee, M. Nagatsu, Appl. Surf. Sci. 390, 489 (2016)

    Article  ADS  Google Scholar 

  7. C.-T. Liu, K.-Y. Cheng, Zh.-H. Lin, C.-J. Wu, J.-Y. Wu, J.-S. Wu, IEEE Trans. Plasma Sci. 44, 3196 (2016)

    Article  ADS  Google Scholar 

  8. O. Birer, Appl. Surf. Sci. 354, 420 (2015)

    Article  ADS  Google Scholar 

  9. T. Wang, B. Yang, X. Chen, X. Wang, C. Yang, J. Liu, Plasma Process. Polym. (early preview)

  10. A. Yamamoto, Y. Kuwano, M. Nakai, T. Nakagawa, T. Sakugawa, H. Hosseini, H. Akiyama, IEEE Trans. Plasma Sci. 43, 3451 (2015)

    Article  ADS  Google Scholar 

  11. S. Wang, J. Zhang, G. Li, D. Wang, Vacuum 101, 317 (2014)

    Article  ADS  Google Scholar 

  12. H. Nizard, T. Gaudy, A. Toutant, J. Iacono, P. Descamps, P. Leempoel, F. Massines, J. Phys. D: Appl. Phys. 48, 415301 (2015)

    Article  Google Scholar 

  13. N. O’Connor, H. Humphreus, S. Daniles, IEEE Trans. Plasma Sci. 42, 756 (2014)

    Article  ADS  Google Scholar 

  14. Z. Cao, Q. Nie, D.L. Baylist, J.L. Walsh, C.S. Ren, D.Z. Wang, M.G. Kong, Plasma Sources Sci. Technol. 19, 025003 (2010)

    Article  ADS  Google Scholar 

  15. J. Furmanski, J.Y. Kim, S.-O. Kim, IEEE Trans. Plasma Sci. 39, 2338 (2011)

    Article  ADS  Google Scholar 

  16. Q.-Q. Fan, M.-Y. Qian, C.-S. Ren, D. Wang, X. Wen, IEEE Trans. Plasma Sci. 40, 1724 (2012)

    Article  ADS  Google Scholar 

  17. Z. Cao, J.L. Walsh, M.G. Kong, Appl. Phys. Lett. 94, 021501 (2009)

    Article  ADS  Google Scholar 

  18. M. Ghasemi, P. Olszewski, J.W. Bradley, J.L. Walsh, J. Phys. D: Appl. Phys. 46, 052001 (2013)

    Article  ADS  Google Scholar 

  19. D.E. Ashpis, M.C. Laun, E.L. Griebeler, National Aeronautics and Space Administration (Glenn Research Center, Cleveland, Ohio, 2012), Tech. Rep. NASA/TM-2012-217449, http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120009957.pdf

  20. M. Holub, Int. J. Appl. Electrom. 39, 81 (2012)

    ADS  Google Scholar 

  21. M. Machida, Braz. J. Phys. 45, 132 (2015)

    Article  ADS  Google Scholar 

  22. C. Liu, N. Cui, N.M.D. Brown, B.J. Meenan, Surf. Coat. Tech. 185, 311 (2004)

    Article  Google Scholar 

  23. P. Slepička, N.S. Kasálková, E. Stránská, L. Bačáková, V. Švorčík, eXPRESS Polym. Lett. 7, 535 (2013)

    Article  Google Scholar 

  24. M. Chaker, M. Moisan, Z. Zakrzewski, Plasma Chem. Plasma Process. 6, 79 (1986)

    Article  Google Scholar 

  25. A.B. Sá, C.M. Ferreira, S. Pasquiers, C. Boisse-Laporte, P. Leprince, J. Marec, J. Appl. Phys. 70, 4147 (1991)

    Article  ADS  Google Scholar 

  26. X. Lu, G.V. Naidis, M. Laroussi, K. Ostrikov, Phys. Rep. 540, 123 (2014)

    Article  ADS  Google Scholar 

  27. SpecAir software, http://specair-radiation.net/, accessed on: April 2017

  28. N. Masoud, K. Martus, M. Figus, K. Becker, Contrib. Plasma Phys. 45, 30 (2005)

    Article  ADS  Google Scholar 

  29. D. Staack, B. Farouk, A.F. Gutsol, A.A. Fridman, Plasma Sources Sci. Technol. 15, 818 (2006)

    Article  Google Scholar 

  30. P.J. Bruggeman, N. Sadeghi, D.C. Schram, V. Linss, Plasma Sources Sci. Technol. 23, 023001 (2014)

    Article  ADS  Google Scholar 

  31. F. Nascimento, M. Machida, M.A. Canesqui, S.A. Moshkalev, IEEE Trans. Plasma Sci. 45, 346 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fellype do Nascimento.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Nascimento, F., Machida, M., Kostov, K. et al. Enhanced energy transfer efficiency in a four-electrodes configuration DBD plasma jet. Eur. Phys. J. D 71, 274 (2017). https://doi.org/10.1140/epjd/e2017-80350-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80350-0

Keywords

Navigation