Skip to main content
Log in

Photon emission by bremsstrahlung and nonlinear Compton scattering in the interaction of ultraintense laser with plasmas

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A Monte Carlo algorithm describing the bremsstrahlung of energetic electrons is implemented into a particle-in-cell code, and used for studies of laser plasma interactions. The simulations are performed for laser pulses of different intensities interacting with low-Z or high-Z targets. The relative strength of photon emission from bremsstrahlung and nonlinear Compton scattering is compared. The nonlinear Compton scattering dominates at ultra-high intensities (I ≥ 1022 W / cm2) and thin high Z targets, while the bremsstrahlung emission makes a comparable contribution at lower laser intensities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)

    Article  ADS  Google Scholar 

  2. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Rev. Mod. Phys. 84, 1177 (2012)

    Article  ADS  Google Scholar 

  3. A.M. Fedotov, N.B. Narozhny, G. Mourou, G. Korn, Phys. Rev. Lett. 105, 080402 (2010)

    Article  ADS  Google Scholar 

  4. T. Grismayer, M. Vranic, J.L. Martins, R.A. Fonseca, L.O. Silva, Phys. Plasmas 23, 056706 (2016)

    Article  ADS  Google Scholar 

  5. P. Zhang, C.P. Ridgers, A.G.R. Thomas, New J. Phys. 17, 043051 (2015)

    Article  ADS  Google Scholar 

  6. L.L. Ji, A. Pukhov, I.Y. Kostyukov, B.F. Shen, K. Akli, Phys. Rev. Lett. 112, 145003 (2014)

    Article  ADS  Google Scholar 

  7. D.L. Burke, R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, C. Bula, K.T. McDonald, E.J. Prebys, C. Bamber, S.J. Boege, T. Koffas, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, D.A. Reis, W. Ragg, Phys. Rev. Lett. 79, 1626 (1997)

    Article  ADS  Google Scholar 

  8. C. Bamber, S.J. Boege, T. Koffas, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, D.A. Reis, W. Ragg, C. Bula, K.T. McDonald, E.J. Prebys, D.L. Burke, R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, Phys. Rev. D 60, 092004 (1999)

    Article  ADS  Google Scholar 

  9. A.R. Bell, J.G. Kirk, Phys. Rev. Lett. 101, 200403 (2008)

    Article  ADS  Google Scholar 

  10. C.P. Ridgers, C.S. Brady, R. Duclous, J.G. Kirk, K. Bennett, T.D. Arber, A.P.L. Robinson, A.R. Bell, Phys. Rev. Lett. 108, 165006 (2012)

    Article  ADS  Google Scholar 

  11. C.P. Ridgers, C.S. Brady, R. Duclous, J.G. Kirk, K. Bennett, T.D. Arber, A.R. Bell, Phys. Plasmas 20, 056701 (2013)

    Article  ADS  Google Scholar 

  12. W. Luo, Y.B. Zhu, H.B. Zhuo, Y.Y. Ma, Y.M. Song, Z.C. Zhu, X.D. Wang, X.H. Li, I.C.E. Turcu, M. Chen, Phys. Plasmas 22, 063112 (2015)

    Article  ADS  Google Scholar 

  13. H.X. Chang, B. Qiao, Z. Xu, X.R. Xu, C.T. Zhou, X.Q. Yan, S.Z. Wu, M. Borghesi, M. Zepf, X.T. He, Phys. Rev. E 92, 053107 (2015)

    Article  ADS  Google Scholar 

  14. X.L. Zhu, Y. Yin, T.P. Yu, F.Q. Shao, Z.Y. Ge, W.Q. Wang, J.J. Liu, New J. Phys. 17, 053039 (2015)

    Article  ADS  Google Scholar 

  15. J.G. Kirk, A.R. Bell, I. Arka, Plasma Phys. Control. Fusion 51, 085008 (2009)

    Article  ADS  Google Scholar 

  16. C.S. Brady, C.P. Ridgers, T.D. Arber, A.R. Bell, J.G. Kirk, Phys. Rev. Lett. 109, 245006 (2012)

    Article  ADS  Google Scholar 

  17. J.G. Kirk, A.R. Bell, C.P. Ridgers, Plasma Phys. Control. Fusion 55, 095016 (2013)

    Article  ADS  Google Scholar 

  18. T.G. Blackburn, C.P. Ridgers, J.G. Kirk, A.R. Bell, Phys. Rev. Lett. 112, 015001 (2014)

    Article  ADS  Google Scholar 

  19. C.P. Ridgers, J.G. Kirk, R. Duclous, T.G. Blackburn, C.S. Brady, K. Bennett, T.D. Arber, A.R. Bell, J. Comput. Phys. 260, 273 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. T.D. Arber, K. Bennett, C.S. Brady, A. Lawrence-Douglas, M.G. Ramsay, N.J. Sircombe, P. Gillies, R.G. Evans, H. Schmitz, A.R. Bell, C.P. Ridgers, Plasma Phys. Control. Fusion 57, 113001 (2015)

    Article  ADS  Google Scholar 

  21. L.L. Ji, A. Pukhov, E.N. Nerush, I.Y. Kostyukov, B.F. Shen, K.U. Akli, Phys. Plasmas 21, 023109 (2014)

    Article  ADS  Google Scholar 

  22. G. Lehmann, K.H. Spatschek, Phys. Rev. E 85, 056412 (2012)

    Article  ADS  Google Scholar 

  23. D. Seipt, B. Kämpfer, Phys. Rev. A 83, 022101 (2011)

    Article  ADS  Google Scholar 

  24. G. Sarri, J. Plasma Phys. 81, 415810202 (2014)

    Article  Google Scholar 

  25. G. Sarri, K. Poder, J.M. Cole, W. Schumaker, A. Di Piazza, B. Reville, T. Dzelzainis, D. Doria, L.A. Gizzi, G. Grittani, S. Kar, C.H. Keitel, K. Krushelnick, S. Kuschel, S.P.D. Mangles, Z. Najmudin, N. Shukla, L.O. Silva, D. Symes, A.G.R. Thomas, M. Vargas, J. Vieira, M. Zepf, Nat. Commun. 6, 6747 (2015)

    Article  ADS  Google Scholar 

  26. L. Guo, J. Zheng, B. Zhao, D. Li, Plasma Phys. Control. Fusion 50, 125004 (2008)

    Article  ADS  Google Scholar 

  27. E. Liang, T. Clarke, A. Henderson, W. Fu, W. Lo, D. Taylor, P. Chaguine, S. Zhou, Y. Hua, X. Cen, X. Wang, J. Kao, H. Hasson, G. Dyer, K. Serratto, N. Riley, M. Donovan, T. Ditmire, Sci. Rep. 5, 13968 (2015)

    Article  ADS  Google Scholar 

  28. O.J. Pike, F. Mackenroth, E.G. Hill, S.J. Rose, Nat. Photon. 8, 434 (2014)

    ADS  Google Scholar 

  29. C. Bula, K.T. McDonald, E.J. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, W. Ragg, D.L. Burke, R.C. Field, G. Horton-Smith, A.C. Odian, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, Phys. Rev. Lett. 76, 3116 (1996)

    Article  ADS  Google Scholar 

  30. A.A. Sokolov, I.M. Ternov, Synchrotron Radiation (Akademie-Verlag, Berlin, 1968)

  31. Y.S. Tsai, Rev. Mod. Phys. 46, 815 (1974)

    Article  ADS  Google Scholar 

  32. S. Jiang, A.G. Krygier, D.W. Schumacher, K.U. Akli, R.R. Freeman, Eur. Phys. J. D 68, 283 (2014)

    Article  ADS  Google Scholar 

  33. A.L. Meadowcroft, R.D. Edwards, IEEE Trans. Plasma Sci. 40, 1992 (2012)

    Article  ADS  Google Scholar 

  34. V. Hanus, L. Drska, E. d’Humieres, V. Tikhonchuk, Laser Part. Beams 32, 171 (2014)

    Article  ADS  Google Scholar 

  35. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  36. F. Salvat, J.M. Fernández-Varea, J. Sempau, PENELOPE-2008: A Code System for Monte Carlo Simulation of Electron, Photon Transport (Nuclear Energy Agency, Barcelona, 2009)

  37. S.M. Seltzer, M.J. Berger, At. Data Nucl. Data Tables 35, 345 (1986)

    Article  ADS  Google Scholar 

  38. L. Kim, R.H. Pratt, S.M. Seltzer, M.J. Berger, Phys. Rev. A 33, 3002 (1986)

    Article  ADS  Google Scholar 

  39. E.N. Nerush, I. Yu. Kostyukov, L. Ji, A. Pukhov, Phys. Plasmas 21, 013109 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baisong Xie.

Additional information

Contribution to the Topical Issue “Relativistic Laser Plasma Interactions”, edited by Tünde Fülöp, Francesco Pegoraro, Vladimir Tikhonchuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, F., Lv, C., Jia, M. et al. Photon emission by bremsstrahlung and nonlinear Compton scattering in the interaction of ultraintense laser with plasmas. Eur. Phys. J. D 71, 236 (2017). https://doi.org/10.1140/epjd/e2017-70805-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70805-7

Navigation