Skip to main content
Log in

Interactions of moving charged particles with triple-walled carbon nanotubes

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study plasmon excitations and channeling trajectories of charged particles in triple-walled carbon nanotubes (TWNTs) based on a semi-classical kinetic model combined with the Molecular Dynamics method. Numerical results show that the outer and inner tubes of a TWNT exert strong influence on the peak structures of the self-energy (or the image potential) and the stopping power curves for the channeling ion, resulting in one or two narrow peaks in the low speed region. In addition, the radial dependencies of the total potential, which includes the image potential due to dynamic polarization of the electron gas in nanotubes and a reactive empirical bond order potential for atomic interactions, are compared for single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs) and TWNTs. By comparing the ion channeling trajectories in those types of nanotubes, we conclude that the variation of the total energy of ions with their channeling distance along the nanotube axis is related to the types of channeling trajectories, exhibiting smooth helical shapes in TWNTs and a succession of sharp reflections off the wall in SWNTs and DWNTs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.H. Lui, Z. Li, K.F. Mak, E. Cappelluti, T.F. Heinz, Nat. Phys. 7, 944 (2011)

    Article  Google Scholar 

  2. L. Brown, R. Hovden, P. Huang, M. Wojcik, D.A. Muller, J. Park, Nano Lett. 12, 1609 (2012)

    Article  ADS  Google Scholar 

  3. T.C. Hirschmann, M.S. Dresselhaus, H. Muramatsu, M. Seifert, U. Wurstbauer, E. Parzinger, K. Nielsch, Y.A. Kim, P.T. Araujo, Phys. Rev. B 91, 075402 (2015)

    Article  ADS  Google Scholar 

  4. D.P. Zhou, Y.N. Wang, L. Wei, Z.L. Mišković, Phys. Rev. A 72, 023202 (2005)

    Article  ADS  Google Scholar 

  5. Y.H. Song, D. Zhao, Y.N. Wang, Phys. Rev. A 78, 012901 (2008)

    Article  ADS  Google Scholar 

  6. Y.Y. Zhang, J.Z. Sun, Y.H. Song, Z.L. Mišković, Y.N. Wang, Carbon 71, 196 (2014)

    Article  Google Scholar 

  7. D.P. Zhou, Y.H. Song, Y.N. Wang, Z.L. Mišković, Phys. Rev. A 73, 033202 (2006)

    Article  ADS  Google Scholar 

  8. Y.N. Wang, Z.L. Mišković, Phys. Rev. A 69, 022901 (2004)

    Article  ADS  Google Scholar 

  9. D.J. Mowbray, Z.L. Mišković, F.O. Goodman, Y.N. Wang, Phys. Rev. B 70, 195418 (2004)

    Article  ADS  Google Scholar 

  10. D.J. Mowbray, Z.L. Mišković, F.O. Goodman, Y.N. Wang, Phys. Lett. A 329, 94 (2004)

    Article  ADS  Google Scholar 

  11. T. Stöckli, J.M. Bonard, A. Châtelain, Z.L. Wang, P. Stadelmann, Phys. Rev. B 64, 115424 (2001)

    Article  ADS  Google Scholar 

  12. D.J. Mowbray, S. Segui, J. Gervasoni, Z.L. Mišković, N. R. Arista, Phys. Rev. B 82, 035405 (2010)

    Article  ADS  Google Scholar 

  13. A.V. Krasheninnikov, K. Nordlund, Phys. Rev. B 71, 245408 (2005)

    Article  ADS  Google Scholar 

  14. S. Bellucci, V.M. Biryukov, A. Cordelli, Phys. Lett. B 608, 53 (2005)

    Article  ADS  Google Scholar 

  15. T.Ch. Hirschmann, P.T. Araujo, H. Muramatsu, X. Zhang, K. Nielsch, Y.A. Kim, M.S. Dresselhaus, ACS Nano 7, 2381 (2013)

    Article  Google Scholar 

  16. T.Ch. Hirschmann, P.T. Araujo, H. Muramatsu, J.F. Rodriguez-Nieva, M. Seifert, K. Nielsch, Y.A. Kim, M.S. Dresselhaus, ACS Nano 8, 1330 (2014)

    Article  Google Scholar 

  17. X. Zhang, W.X. Zhou, X.K. Chen, Y.Y. Liu, K.Q. Chen, Phys. Lett. A 380, 1861 (2016)

    Article  ADS  Google Scholar 

  18. Y. Yan, X.Q. He, L.X. Zhang, C.M. Wang, J. Sound Vib. 319, 1003 (2009)

    Article  ADS  Google Scholar 

  19. G. Gumbs, A. Balassis, P. Fekete, Phys. Rev. B 73, 075411 (2006)

    Article  ADS  Google Scholar 

  20. S. Chung, D.J. Mowbray, Z.L. Mišković, F.O. Goodman, Y.N. Wang, Radiat. Phys. Chem. 76, 524 (2007)

    Article  ADS  Google Scholar 

  21. D. Zhao, Y.H. Song, Y.N. Wang, Chin. Phys. Lett. 25, 2588 (2008)

    Article  ADS  Google Scholar 

  22. S.Y. You, Y.H. Song, Y.N. Wang, Nucl. Instrum. Methods Phys. Res. B 267, 3133 (2009)

    Article  ADS  Google Scholar 

  23. Y.Y. Zhang, D. Zhao, S.Y. You, Y.H. Song, Y.N. Wang, Chin. Phys. Lett. 30, 096103 (2013)

    Article  ADS  Google Scholar 

  24. G. Gumbs, A. Balassis, Phys. Rev. B 71, 235410 (2005)

    Article  ADS  Google Scholar 

  25. D.W. Brenner. Phys. Rev. B 42, 9458 (1990)

    Article  ADS  Google Scholar 

  26. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002)

    ADS  Google Scholar 

  27. T. Pichler, M. Knupfer, M.S. Golden, J. Fink, A. Rinzler, R.E. Smalley, Phys. Rev. Lett. 80, 4729 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Hong Song.

Additional information

Contribution to the Topical Issue “Physics of Ionized Gases (SPIG 2016)”, edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YY., Song, YH., Radović, I. et al. Interactions of moving charged particles with triple-walled carbon nanotubes. Eur. Phys. J. D 71, 219 (2017). https://doi.org/10.1140/epjd/e2017-70744-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70744-3

Navigation