Skip to main content
Log in

Benchmark for two-photon ionization of atoms with generalized Sturmian functions

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The description with traditional methods of the single or multiple ionization of atoms and molecules by two or more successive photons requires some special treatment. Difficulties occur when a spatially non-decaying driven term appears in the Schrödinger-like non-homogeneous equation for the scattering wave function. We propose using the intrinsic physical and mathematical properties of generalized Sturmian functions to efficiently deal with the Dalgarno-Lewis second order equation. In contrast to other approaches, our methodology provides a practical way to extract the transition amplitude from the asymptotic behavior of the scattering wave function, and this without requiring any further projection onto some final approximate state. As an illustration, the hydrogen case is studied in details, for both pulsed and monochrome laser radiation fields. The successful comparison with analytical and time-dependent solutions provides a benchmark, and allows us to master the numerical aspects of the methodology. Appropriately chosen generalized Sturmian functions manage to easily reproduce the beat-type asymptotic behavior observed in the photoelectron wave function after absorption by the atom of two successive photons.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Sándor, V. Tagliamonti, A. Zhao, T. Rozgonyi, M. Ruckenbauer, P. Marquetand, T. Weinacht, Phys. Rev. Lett. 116, 063002 (2016)

    Article  ADS  Google Scholar 

  2. R.E. Goetz, A. Karamatskou, R. Santra, C.P. Koch, Phys. Rev. A 93, 013413 (2016)

    Article  ADS  Google Scholar 

  3. J. Miao, T. Ishikawa, I.K. Robinson, M.M. Murnane, Science 348, 530 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. H. Öström et al., Science 347, 978 (2015)

    Article  ADS  Google Scholar 

  5. L.J. Zipp, A. Natan, P.H. Bucksbaum, Optica 1, 361 (2014)

    Article  Google Scholar 

  6. M. Chini, K. Zhao, Z. Chang, Nat. Photon. 8, 178 (2014)

    Article  ADS  Google Scholar 

  7. K.T. Kim, D.M. Villeneuve, P.B. Corkum, Nat. Photon. 8, 187 (2014)

    Article  ADS  Google Scholar 

  8. F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J.B. Greenwood, F. Martín, M. Nisoli, Science 346, 336 (2014)

    Article  ADS  Google Scholar 

  9. C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C.H. Keitel, C.H. Greene, T. Pfeifer, Science 340,716 (2013)

    Article  ADS  Google Scholar 

  10. K. Klünder, J.M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, A. L’Huillier, Phys. Rev. Lett. 106, 143002 (2011)

    Article  ADS  Google Scholar 

  11. J. Mauritsson, T. Remetter, M. Swoboda, K. Klünder, A. LHuillier, K.J. Schafer, O. Ghafur, F. Kelkensberg, W. Siu, P. Johnsson, M.J.J. Vrakking, I. Znakovskaya, T. Uphues, S. Zherebtsov, M.F. Kling, F. Lepine, E. Benedetti, F. Ferrari, G. Sansone, M. Nisoli, Phys. Rev. Lett. 105, 053001 (2010)

    Article  ADS  Google Scholar 

  12. P. Emma, K. Bane, M. Cornacchia, Z. Huang, H. Schlarb, G. Stupakov, D. Walz, Phys. Rev. Lett. 92, 074801 (2004)

    Article  ADS  Google Scholar 

  13. C.M. Granados-Castro, L.U. Ancarani, G. Gasaneo, D.M. Mitnik, Adv. Quantum Chem. 73, 3 (2016)

    Article  Google Scholar 

  14. Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, R. Dröner, Nature 405, 658 (2000)

    Article  ADS  Google Scholar 

  15. E. Goulielmakis, Z. Loh, A. Wirth, R. Santra, N. Rohringer, V.S. Yakovlev, S. Zherebtsov, T. Pfeifer, A.M. Azzeer, M.F. Kling, S.R. Leone, F. Krausz, Nature 466, 739 (2010)

    Article  ADS  Google Scholar 

  16. M. Holler, F. Schapper, L. Gallmann, U. Keller, Phys. Rev. Lett. 106, 123601 (2011)

    Article  ADS  Google Scholar 

  17. C. Ott, A. Kaldun, L. Argenti, P. Raith, K. Meyer, M. Laux, Y. Zhang, A. Blattermann, S. Hagstotz, T. Ding, R. Heck, J. Madroñero, F. Martín, T. Pfeifer, Nature 516, 374 (2014)

    Article  ADS  Google Scholar 

  18. M.G. Pullen, W.C. Wallace, D.E. Laban, A.J. Palmer, G.F. Hanne, A.N. Grum-Grzhimailo, K. Bartschat, I. Ivanov, A. Kheifets, D. Wells, H.M. Quiney, X.M. Tong, I.V. Litvinyuk, R.T. Sang, D. Kielpinski, Phys. Rev. A 87, 053411 (2013)

    Article  ADS  Google Scholar 

  19. D.A. Horner, F. Morales, T.N. Rescigno, F. Martín, W. McCurdy, Phys. Rev. A 76, 030701(R) (2007)

    Article  ADS  Google Scholar 

  20. G. Gasaneo, L.U. Ancarani, D.M. Mitnik, J.M. Randazzo, A.L. Frapiccini, F.D. Colavecchia, Adv. Quantum Chem. 67, 153 (2013)

    Article  Google Scholar 

  21. D.M. Mitnik, F.D. Colavecchia, G. Gasaneo, J.M. Randazzo, Comp. Phys. Commun. 182, 1145 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  22. J.M. Randazzo, D.M. Mitnik, G. Gasaneo, L.U. Ancarani, F.D. Colavecchia, Eur. Phys. J. D 69, 189 (2015)

    Article  ADS  Google Scholar 

  23. L. Malegat, H. Bachau, A. Hamido, B. Piraux, J. Phys. B 43, 245601 (2010)

    Article  ADS  Google Scholar 

  24. L. Malegat, P. Selles, A. Kazansky, Phys. Rev. A 60, 3667 (1999)

    Article  ADS  Google Scholar 

  25. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, 2nd edn. (Pearson Education Limited, Malaysia, 2003)

  26. M. Karplus, H.J. Kolker, J. Chem. Phys. 39, 1493 (1963)

    Article  ADS  Google Scholar 

  27. P.W. Langhoff, S.T. Epstein, M. Karplus, Rev. Mod. Phys. 3, 602 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Palacios, C.W. McCurdy, T.N. Rescigno, Phys. Rev. A 76, 043420 (2007)

    Article  ADS  Google Scholar 

  29. A. Palacios, C.W. McCurdy, T.N. Rescigno, Phys. Rev. A 77, 032716 (2008)

    Article  ADS  Google Scholar 

  30. C.M. Granados-Castro, J.L. Sanz-Vicario, J. Phys. B 46, 055601 (2013)

    Article  ADS  Google Scholar 

  31. F.H.M. Faisal, Theory of Multiphoton Processes, 2nd edn. (Springer Science & Business Media, New York, 1987)

  32. G. Gasaneo, L.U. Ancarani, in Press

  33. J.M. Harriman, Phys. Rev. 101, 594 (1956)

    Article  ADS  Google Scholar 

  34. T.N. Rescigno, V. McKoy, Phys. Rev. A 12, 522 (1975)

    Article  ADS  Google Scholar 

  35. J.L. Sanz-Vicario, A. Palacios, J.C. Cardona, H. Bachau, F. Martín, J. Electron Spectrosc. Relat. Phenom. 161, 182 (2007)

    Article  Google Scholar 

  36. D.G. Arbó, private communication

  37. E. Karule, B. Moine, J. Phys. B 36, 1963 (2003)

    Article  ADS  Google Scholar 

  38. M.J. Ambrosio, L.U. Ancarani, A.I. Gómez, G. Gasaneo, D.M. Mitnik, submitted to J. Math. Phys.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio I. Gómez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, A., Gasaneo, G., Mitnik, D. et al. Benchmark for two-photon ionization of atoms with generalized Sturmian functions. Eur. Phys. J. D 70, 207 (2016). https://doi.org/10.1140/epjd/e2016-70259-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70259-5

Keywords

Navigation