Skip to main content
Log in

Anomalous pseudogap in population imbalanced Fermi superfluids

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In a Fermi superfluid increasing population imbalance leads initially to reduction of the transition temperature, then the appearance of modulated Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states, and finally the suppression of pairing itself. We have carried out a detailed investigation of the spectral behavior of the imbalanced Fermi system and observe intriguing subgap features in the low polarization regime, and a re-entrant pseudogap state at large polarization. These weak imbalance and strong imbalance features both involve effects well beyond mean field theory. We establish them by using a Monte Carlo technique on large lattices, motivate the results in terms of the pairing field distribution, and compare them to spectroscopic results in the imbalanced unitary Fermi gas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A.R. Sa de Melo, M. Randeria, J.R. Engelbrecht, Phys. Rev. Lett. 71, 3202 (1993)

    Article  ADS  Google Scholar 

  2. R. Haussmann, W. Rantner, S. Cerrito, W. Zwerger, Phys. Rev. A 75, 023610 (2007)

    Article  ADS  Google Scholar 

  3. A. Perali, P. Pieri, L. Pisani, G.C. Strinati, Phys. Rev. Lett. 92, 220404 (2004)

    Article  ADS  Google Scholar 

  4. E. Burovski, N. Prokofev, B. Svistunov, M. Troyer, Phys. Rev. Lett. 96, 160402 (2006)

    Article  ADS  Google Scholar 

  5. A. Bulgac, J.E. Drut, P. Magierski, Phys. Rev. Lett. 99, 120401 (2007)

    Article  ADS  Google Scholar 

  6. V.K. Akkineni, D.M. Ceperley, N. Trivedi, Phys. Rev. B 76, 165116 (2007)

    Article  ADS  Google Scholar 

  7. M. Randeria, E. Taylor, Ann. Rev. Cond. Mater Phys. 5, 209 (2014)

    Article  Google Scholar 

  8. A.J. Leggett, Nature Phys. 2, 134 (2006)

    Article  ADS  Google Scholar 

  9. Ch.-C. Chien, H. Guo, Y. He, K. Levin, Phys. Rev. A 81, 023622 (2010)

    Article  ADS  Google Scholar 

  10. S. Hufner, M.A. Hossain, A. Damascelli, G. Sawatzky, Rep. Prog. Phys. 71, 062501 (2008)

    Article  ADS  Google Scholar 

  11. C.-C. Chien, Q.J. Chen, K. Levin, Phys. Rev. A 78, 043612 (2008)

    Article  ADS  Google Scholar 

  12. K. Le Hur, T.M. Rice, Ann. Phys. 324, 1452 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. F. Palestini, A. Perali, P. Pieri, G.C. Strinati, Phys. Rev. B 85, 024517 (2012)

    Article  ADS  Google Scholar 

  14. C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J.H. Denschlag, R. Grimm, Science 305, 1128 (2004)

    Article  ADS  Google Scholar 

  15. A. Schirotzek, Y. Shin, C.H. Schunck, W. Ketterle, Phys. Rev. Lett. 101, 140403 (2008)

    Article  ADS  Google Scholar 

  16. C.H. Schunck, Y. Shin, A. Schirotzek, M.W. Zwierlein, W. Ketterle, Science 316, 867 (2007)

    Article  ADS  Google Scholar 

  17. P. Fulde, R.A. Ferrell, Phys. Rev. A 135, 550 (1964)

    Article  ADS  Google Scholar 

  18. A.I. Larkin, Yu.N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964)

    Google Scholar 

  19. A.I. Larkin, Yu.N. Ovchinnikov, Sov. Phys. J. Exp. Theor. Phys. 20, 762 (1965)

    MathSciNet  Google Scholar 

  20. G. Sarma, J. Phys. Chem. Solids 24, 1029 (1963)

    Article  ADS  Google Scholar 

  21. K. Kumagai, M. Saitoh, T. Oyaizu, Y. Furukawa, S. Takashima, M. Nohara, H. Takagi, Y. Matsuda, Phys. Rev. Lett. 97, 227002 (2006)

    Article  ADS  Google Scholar 

  22. Y.-il Shin, C.H. Schunck, A. Schirotzek, W. Ketterle, Nature 451, 689 (2008)

    Article  ADS  Google Scholar 

  23. G.B. Partridge, W. Li, R.I. Kamar, Y.-an Liao, R.G. Hulet, Science 311, 503 (2006)

    Article  ADS  Google Scholar 

  24. Y.-an Liao, A.S.C. Rittner, T. Paprotta, W. Li, G.B. Partridge, R.G. Hulet, S.K. Baur, E.J. Mueller, Nature 467, 567 (2010)

    Article  ADS  Google Scholar 

  25. T. Kashimura, R. Watanabe, Y. Ohashi, Phys. Rev. A 89, 013618 (2014)

    Article  ADS  Google Scholar 

  26. Y. He, C.-C. Chien, Q. Chen, K. Levin, Phys. Rev. A 77, 011602 (2008)

    Article  ADS  Google Scholar 

  27. Q. Chen, Y. He, C.-C. Chien, K. Levin, Phys. Rev. A 74, 063603 (2006)

    Article  ADS  Google Scholar 

  28. C.-C. Chien, Q. Chen, Y. He, K. Levin, Phys. Rev. Lett. 97, 090402 (2006)

    Article  ADS  Google Scholar 

  29. W. Yi, L.M. Duan, Phys. Rev. A 73, 031604(R) (2006)

    Article  ADS  Google Scholar 

  30. A. Sedrakian, U. Lombardo, Phys. Rev. Lett. 84, 602 (2000)

    Article  ADS  Google Scholar 

  31. T.K. Koponen, T. Paananen, J.-P. Martikainen, P. Torma, Phys. Rev. Lett. 99, 120403 (2007)

    Article  ADS  Google Scholar 

  32. M.O.J. Heikkinen, D.H. Kim, P. Torma, Phys. Rev. B 87, 224513 (2013)

    Article  ADS  Google Scholar 

  33. M.O.J. Heikkinen, D.-H. Kim, P. Torma, Phys. Rev. Lett. 113, 185301 (2013)

    Article  ADS  Google Scholar 

  34. M.J. Wolak, B. Gremaud, R.T. Scalettar, G.G. Batrouni, Phys. Rev. A 86, 023630 (2012)

    Article  ADS  Google Scholar 

  35. Y. Matsuda, H. Shimahara, J. Phys. Soc. Jpn 76, 051005 (2007)

    Article  ADS  Google Scholar 

  36. J. Gukelberger, S. Lienert, E. Kozik, L. Pollet, M. Troyer, arXiv:1509.05050 (2015)

  37. Y.L. Loh, N. Trivedi, Phys. Rev. Lett. 104, 165302 (2010)

    Article  ADS  Google Scholar 

  38. M. Karmakar, P. Majumdar, Phys. Rev. A 93, 053609 (2016)

    Article  ADS  Google Scholar 

  39. S. Tarat, P. Majumdar, Eur. Phys. J. B 88, 68 (2015)

    Article  ADS  Google Scholar 

  40. J. Hubbard, Phys. Rev. B 19, 2626 (1979)

    Article  ADS  Google Scholar 

  41. W.E. Evenson, J.R. Schrieffer, S.Q. Wang, J. Appl. Phys. 41, 1199 (1970)

    Article  ADS  Google Scholar 

  42. S. Kumar, P. Majumdar, Eur. Phys. J. B 50, 571 (2006)

    Article  ADS  Google Scholar 

  43. P.G. de Gennes, Superconductivity of metals and alloys (Westview Press, 1999)

  44. M. Randeria, Nat. Phys. 6, 561 (2010)

    Article  Google Scholar 

  45. S. Chiesa, S. Zhang, Phys. Rev. A 88, 043624 (2013)

    Article  ADS  Google Scholar 

  46. J. Xu, C.-C. Chang, E.J. Walter, S. Zhang, J. Phys.: Condens. Matter 23, 505601 (2011)

    Google Scholar 

  47. Y. Shin, C.H. Schunck, A. Schirotzek, W. Ketterle, Phys. Rev. Lett. 99, 090403 (2007)

    Article  ADS  Google Scholar 

  48. M. Veillette, E.G. Moon, A. Lamacraft, L. Radzihovsky, S. Sachdev, D.E. Sheehy, Phys. Rev. A 78, 033614 (2008)

    Article  ADS  Google Scholar 

  49. L. Radzihovsky, Phys. Rev. A 84, 023611 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhuparna Karmakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, M., Majumdar, P. Anomalous pseudogap in population imbalanced Fermi superfluids. Eur. Phys. J. D 70, 220 (2016). https://doi.org/10.1140/epjd/e2016-70250-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70250-2

Keywords

Navigation