Skip to main content
Log in

On the fundamental role of dynamics in quantum physics

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Quantum theory expresses the observable relations between physical properties in terms of probabilities that depend on the specific context described by the “state” of a system. However, the laws of physics that emerge at the macroscopic level are fully deterministic. Here, it is shown that the relation between quantum statistics and deterministic dynamics can be explained in terms of ergodic averages over complex valued probabilities, where the fundamental causality of motion is expressed by an action that appears as the phase of the complex probability multiplied with the fundamental constant ħ. Importantly, classical physics emerges as an approximation of this more fundamental theory of motion, indicating that the assumption of a classical reality described by differential geometry is merely an artefact of an extrapolation from the observation of macroscopic dynamics to a fictitious level of precision that does not exist within our actual experience of the world around us. It is therefore possible to completely replace the classical concepts of trajectories with the more fundamental concept of action phase probabilities as a universally valid description of the deterministic causality of motion that is observed in the physical world.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Pusey, J. Barrett, T. Rudolph T, Nat. Phys. 8, 475 (2012)

    Article  Google Scholar 

  2. M.S. Leiffer, Quanta 3, 67 (2014)

    Article  Google Scholar 

  3. M. Ringbauer, B. Duffus, C. Branciard, E.G. Cavalcanti, A.G. White, A. Fedrizzi, Nat. Phys. 11, 249 (2015)

    Article  Google Scholar 

  4. J.S. Bell, Physics 1, 195 (1964)

    Google Scholar 

  5. S. Kochen, E.P. Specker, J. Math. Mech. 17, 59 (1967)

    MathSciNet  Google Scholar 

  6. A.J. Leggett, A. Garg, Phys. Rev. Lett. 54, 857 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  7. Y. Aharonov, L. Vaidman, J. Phys. A 24, 2315 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  8. L. Hardy, Phys. Rev. Lett. 68, 2981 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. Y. Aharonov, S. Popescu, D. Rohrlich, P. Skrzypczyk, New J. Phys. 15, 113015 (2013)

    Article  ADS  Google Scholar 

  10. J.S. Lundeen, A.M. Steinberg, Phys. Rev. Lett. 102, 020404 (2009)

    Article  ADS  Google Scholar 

  11. K. Yokota, T. Yamamoto, M. Koashi, N. Imoto, New J. Phys. 11, 033011 (2009)

    Article  ADS  Google Scholar 

  12. M.E. Goggin, M.P. Almeida, M. Barbieri, B.P. Lanyon, J.L. O’Brien, A.G. White, G.J. Pryde, Proc. Natl. Acad. Sci. USA 108, 1256 (2011)

    Article  ADS  Google Scholar 

  13. Y. Suzuki, M. Iinuma, H.F. Hofmann, New J. Phys. 14, 103022 (2012)

    Article  Google Scholar 

  14. J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa, Y. Hasegawa, Nat. Phys. 8, 185 (2012)

    Article  Google Scholar 

  15. L.A. Rozema, A. Darabi, D.H. Mahler, A. Hayat, Y. Soudagar, A.M. Steinberg, Phys. Rev. Lett. 109, 100404 (2012)

    Article  ADS  Google Scholar 

  16. M. Ringbauer, D.N. Biggerstaff, M.A. Broome, A. Fedrizzi, C. Branciard, A.G. White, Phys. Rev. Lett. 112, 020401 (2014)

    Article  ADS  Google Scholar 

  17. M. Iinuma, Y. Suzuki, T. Nii, R. Kinoshita, H.F. Hofmann, Phys. Rev. A 93, 032104 (2016)

    Article  ADS  Google Scholar 

  18. H.F. Hofmann, New J. Phys. 13, 103009 (2011)

    Article  ADS  Google Scholar 

  19. H.F. Hofmann, New J. Phys. 14, 043031 (2012)

    Article  ADS  Google Scholar 

  20. H.F. Hofmann, Phys. Rev. A 89, 042115 (2014)

    Article  ADS  Google Scholar 

  21. H.F. Hofmann, Phys. Rev. A 91, 062123 (2015)

    Article  ADS  Google Scholar 

  22. N.H. McCoy, Proc. Natl. Acad. Sci. USA 18, 674 (1932)

    Article  ADS  Google Scholar 

  23. J.G. Kirkwood, Phys. Rev. 44, 31 (1933)

    Article  ADS  Google Scholar 

  24. P.A.M. Dirac, Rev. Mod. Phys. 17, 195 (1945)

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Kino, T. Nii, H.F. Hofmann, Phys. Rev. A 92, 042113 (2015)

    Article  ADS  Google Scholar 

  26. J.S. Lundeen, B. Sutherland, A. Patel, C. Stewart, C. Bamber, Nature 474, 188 (2011)

    Article  Google Scholar 

  27. J.S. Lundeen, C. Bamber, Phys. Rev. Lett. 108, 070402 (2012)

    Article  ADS  Google Scholar 

  28. J.Z. Salvail, M. Agnew, A.S. Johnson, E. Bolduc, J. Leach, R.W. Boyd, Nat. Photon. 7, 316 (2013)

    Article  ADS  Google Scholar 

  29. C. Bamber, J.S. Lundeen, Phys. Rev. Lett. 112, 070405 (2014)

    Article  ADS  Google Scholar 

  30. H.F. Hofmann, New J. Phys. 16, 063056 (2014)

    Article  ADS  Google Scholar 

  31. H.F. Hofmann, Phys. Rev. Lett. 109, 020408 (2012)

    Article  ADS  Google Scholar 

  32. M. Hiroishi, H.F. Hofmann, J. Phys. A 46, 245302 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  33. W.P. Schleich, M. Freyberger, M.S. Zubairy, Phys. Rev. A 87, 014102 (2013)

    Article  ADS  Google Scholar 

  34. M.J.W. Hall, D.-A. Deckert, H.M. Wiseman, Phys. Rev. X 4, 041013 (2014)

    Google Scholar 

  35. J.S. Briggs, Phys. Rev. A 91, 052119 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger F. Hofmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, H. On the fundamental role of dynamics in quantum physics. Eur. Phys. J. D 70, 118 (2016). https://doi.org/10.1140/epjd/e2016-70086-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70086-8

Keywords

Navigation