Skip to main content
Log in

Double dark resonance in inverted Y system and its application in attenuating the optical switching action

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Electromagnetically Induced Transparency as a novel type optical memory has gained enough attention in the field of research related to optical communication. This kind of transparency is an artificially created spectral window used to slow and spatially compress light pulses. Hence controlling and manipulation of such transparency window in a multilevel atom-photon system will, in turn, help in opening newer avenues of applications. In the present work an inverted Y linkage (established in the 5S1/2 → 5P3/2 → 5D5/2 hyperfine levels of 87Rb atom) is used for this purpose. The formation of matched double dark resonance in the system has been studied in details. On the application front we have demonstrated using the system as an attenuator of optical switch. This type of necessity may arise for futuristic optical communication system. Overall the system response resembles the performance of a combination logic gate.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Arimondo, G. Orriols, Lett. Nuovo Cemento 17, 333 (1976)

    Article  ADS  Google Scholar 

  2. S.E. Harris, J.E. Field, A. Imamoǧlu, Phys. Rev. Lett. 64, 1107 (1990)

    Article  ADS  Google Scholar 

  3. K.-J. Boller, A. Imamoǧlu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  Google Scholar 

  4. S. Knappe, V. Shah, P.D. Schwindt, L. Hollberg, J. Kitching, L. Liew, J. Moreland, Appl. Phys. Lett. 85, 1460 (2004)

    Article  ADS  Google Scholar 

  5. M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, R. Wynands, Eur. Phys. Lett. 54, 323 (2001)

    Article  ADS  Google Scholar 

  6. O. Kocharovskaya, Y. Rostovtsev, M.O. Scully, Phys. Rev. Lett. 86, 628 (2001)

    Article  ADS  Google Scholar 

  7. A.S. Zibrov, M.D. Lukin, L. Hollberg, M.O. Scully, Phys. Rev. A 65, 051801 (2002)

    Article  ADS  Google Scholar 

  8. J. Clarke, H. Chen, W.A. Van Wijngaarden, Appl. Opt. 40, 2047 (2001)

    Article  ADS  Google Scholar 

  9. S.E. Harris, Y. Yamamoto, Phys. Rev. Lett. 81, 3611 (1998)

    Article  ADS  Google Scholar 

  10. S. Kumar, T. Lauprêtre, R. Ghosh, F. Bretenaker, F. Goldfarb, Phys. Rev. A 84, 023811 (2011)

    Article  ADS  Google Scholar 

  11. A. Joshi, M. Xiao, Phys. Lett. A 317, 370 (2003)

    Article  ADS  MATH  Google Scholar 

  12. J. Qi, Phys. Scr. 81, 015402 (2010)

    Article  ADS  Google Scholar 

  13. J. Kou, R.-G. Wan, S.-Q. Kuang, L. Jiang, L. Zhang, Z.-H. Kang, H.-H. Wang, J.-Y. Gao, Opt. Commun. 284, 1603 (2011)

    Article  ADS  Google Scholar 

  14. M.A. Antón, F. Carreño Oscar, G. Calderón, S. Melle, I. Gonzalo, Opt. Cmmun. 281, 6040 (2008)

    Article  ADS  Google Scholar 

  15. M. Yan, E.G. Rickey, Y. Zhu, Phys. Rev. A 64, 043807 (2001)

    Article  ADS  Google Scholar 

  16. A.K. Mohapatra, T.R. Jackson, C.S. Adams, Phys. Rev. Lett. 98, 113003 (2007)

    Article  ADS  Google Scholar 

  17. H.S. Moon, H.-R. Noh, Opt. Exp. 21, 7447 (2013)

    Article  ADS  Google Scholar 

  18. H.S. Moon, L. Lee, J.B. Kim, Opt. Exp. 16, 12163 (2008)

    Article  ADS  Google Scholar 

  19. A. Ray, Md.S. Ali, A. Chakrabarti, Eur. Phys. J. D 67, 78 (2013)

    Article  ADS  Google Scholar 

  20. A. Ray, Md.S. Ali, A. Chakrabarti, Opt. Laser Technol. 60, 107 (2014)

    Article  ADS  Google Scholar 

  21. A. Ray, Md.S. Ali, A. Chakrabarti, Eur. Phys. J. D 69, 41 (2015)

    Article  ADS  Google Scholar 

  22. J.P. Marangos, J. Mod. Opt. 45, 471 (1998)

    Article  ADS  Google Scholar 

  23. Y.-Q. Li, M. Xiao, Opt. Lett. 20, 1489 (1995)

    Article  ADS  Google Scholar 

  24. J. Gea-Banacloche, Y. Li, S. Jin, M. Xiao, Phys. Rev. A 51, 576 (1995)

    Article  ADS  Google Scholar 

  25. Y.B. Kale, A. Ray, R. D’Souza, Q.V. Lawande, B.N. Jagatap, Appl. Phys. B 100, 505 (2010)

    Article  ADS  Google Scholar 

  26. K. Sowka, M. Weel, S. Cauchi, L. Cockins, A. Kumarakrishnan, Can. J. Phys. 83, 907 (2005)

    Article  ADS  Google Scholar 

  27. A. Sargsyan, D. Sarkisyan, U. Krohn, J. Keaveney, C. Adams, Phys. Rev. A 82, 045806 (2010)

    Article  ADS  Google Scholar 

  28. H. Lee, Y. Rostovtsev, C.J. Bednar, A. Javan, Appl. Phys. B 76, 33 (2003)

    Article  ADS  Google Scholar 

  29. B.W. Shore, Act. Phys. Slov. 58, 243 (2008)

    ADS  Google Scholar 

  30. J.Q. Shen, P. Zhang, Opt. Rxp. 15, 6484 (2007)

    Google Scholar 

  31. L.J. Wang, A. Kuzmich, A. Dogariu, Nature 406, 277 (2000)

    Article  ADS  Google Scholar 

  32. P. Arve, P. Jänes, L. Thylén, Phys. Rev. A 69, 063809 (2004)

    Article  ADS  Google Scholar 

  33. S. Sangu, K. Kobayashi, A. Shojiguchi, M. Ohtsu, Phys. Rev. B 69, 115334 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabir Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Ray, A. & Chakrabarti, A. Double dark resonance in inverted Y system and its application in attenuating the optical switching action. Eur. Phys. J. D 70, 27 (2016). https://doi.org/10.1140/epjd/e2015-60533-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60533-5

Keywords

Navigation