Skip to main content
Log in

Dissociation of OCS by high energy highly charged ion impact

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Various dissociation channels of OCSq+ (where q = 2 to 4), formed in the interaction of 5 MeV u-1 Si12+ ion beam with neutral OCS, have been studied using recoil–ion momentum spectroscopy. The concerted and/or sequential nature of dissociation is inferred from the shape and slope of the coincidence islands in the 2D coincidence map. It is observed that the C+ + S+ + O channel results from concerted as well as sequential decay of OCS2+. However the other channels originate purely from the concerted process in which the two terminal fragments (oxygen and sulphur) fly back to back and the central carbon fragment is left with negligible momentum. The kinetic energy release (KER) distributions for all the fragmentation channels arising from the dissociation of OCSq+ (where q = 2 to 4) have been measured and compared with the available data in the literature. It is observed that the KER values for complete Coulomb fragmentation channels are much smaller than those of incomplete Coulomb fragmentation cases and the KER increases with the increasing charge states of the parent molecular ions. From the momentum correlation map, we estimated the geometry of the precursor molecular ion undergoing three–body dissociation and inferred that bent dissociative states are involved in most of the fragmentation channels of OCSq+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bilalbegović, Eur. Phys. J. D 49, 43 (2008)

    Article  ADS  Google Scholar 

  2. A. Sugita, M. Mashino, M. Kawasaki, Y. Matsumi, R. Bersohn, G. Trott-Kriegeskorte, K. Gericke, J. Chem. Phys. 112, 7095 (2000)

    Article  ADS  Google Scholar 

  3. D. Mathur, E. Krishnakumar, F.A. Rajgara, U.T. Rajeha, V. Krishnamurthi, J. Phys. B 25, 2997 (1992)

    Article  ADS  Google Scholar 

  4. B. Siegmann, U. Werner, H.O. Lutz, R. Mann, J. Phys. B 35, 3755 (2002)

    Article  ADS  Google Scholar 

  5. N. Neumann, D. Hant, L.Ph.H. Schmidt, J. Titze, T. Jahnke, A. Czasch, M.S. Schoffler, K. Kreidi, O. Jagutzki, H. Schmidt-Bocking, R. Dorner, Phys. Rev. Lett. 104, 103201 (2010)

    Article  ADS  Google Scholar 

  6. P. Moretto-Capelle, D. Bordenave-Montesquieu, A. Bordenave-Montesquieu, J. Phys. B 33, L539 (2000)

    Article  ADS  Google Scholar 

  7. P. Wang, C.R. Vidal, J. Chem. Phys. 118, 5383 (2003)

    Article  ADS  Google Scholar 

  8. J.E. Hudson, C. Vallance, P.W. Harland, J. Phys. B 37, 445 (2004)

    Article  ADS  Google Scholar 

  9. T. Masuoka, I. Koyano, N. Saito, J. Chem. Phys. 97, 2392 (1992)

    Article  ADS  Google Scholar 

  10. M.L. Lipciuc, M.H.M. Janssen, J. Chem. Phys. 126, 194318 (2007)

    Article  ADS  Google Scholar 

  11. W.A. Bryan, W.R. Newell, J.H. Sanderson, A.J. Langley, Phys. Rev. A 74, 053409 (2006)

    Article  ADS  Google Scholar 

  12. J.H. Sanderson et al., Phys. Rev. A 65, 043403 (2002)

    Article  ADS  Google Scholar 

  13. J. Laksman, D. Céolin, M. Gisselbrecht, S.L. Sorensen, J. Chem. Phys. 133, 144314 (2010)

    Article  ADS  Google Scholar 

  14. M.R. Jana, B. Ray, P.N. Ghosh, C.P. Safvan, J. Phys. B 43, 215207 (2010)

    Article  ADS  Google Scholar 

  15. B. Wales, T. Motojima, J. Matsumoto, Z. Long, W. Liu, H. Shiromaru, J. Sanderson, J. Phys. B 45, 045205 (2012)

    Article  ADS  Google Scholar 

  16. D. Kanjilal, S. Chopra, M.M. Narayanan, I.S. Iyer, V. Jha, R. Joshi, S.K. Datta, Nucl. Instrum. Methods Phys. Res. A 328, 97 (1993)

    Article  ADS  Google Scholar 

  17. R.K. Kushawaha, S. Sunil Kumar, M.R. Jana, I.A. Prajapati, C.P. Safvan, B. Bapat, J. Phys. B 43, 205204 (2010)

    Article  ADS  Google Scholar 

  18. M.R. Jana, P.N. Ghosh, B. Bapat, R.K. Kushawaha, K. Saha, I.A. Prajapati, C.P. Safvan, Phys. Rev. A 84, 062715 (2011)

    Article  ADS  Google Scholar 

  19. J.H.D. Eland, Mol. Phys. 61, 725 (1987)

    Article  ADS  Google Scholar 

  20. V. Brites, J.H.D. Eland, M. Hochlaf, Chem. Phys. 346, 23 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mridula Rani Jana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, M.R., Ghosh, P.N., Ray, B. et al. Dissociation of OCS by high energy highly charged ion impact. Eur. Phys. J. D 68, 250 (2014). https://doi.org/10.1140/epjd/e2014-50367-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50367-0

Keywords

Navigation