Skip to main content
Log in

A generalized complexity measure based on Rényi entropy

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The intrinsic statistical complexities of finite many-particle systems (i.e., those defined in terms of the single-particle density) quantify the degree of structure or patterns, far beyond the entropy measures. They are intuitively constructed to be minima at the opposite extremes of perfect order and maximal randomness. Starting from the pioneering LMC measure, which satisfies these requirements, some extensions of LMC-Rényi type have been published in the literature. The latter measures were shown to describe a variety of physical aspects of the internal disorder in atomic and molecular systems (e.g., quantum phase transitions, atomic shell filling) which are not grasped by their mother LMC quantity. However, they are not minimal for maximal randomness in general. In this communication, we propose a generalized LMC-Rényi complexity which overcomes this problem. Some applications which illustrate this fact are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)

  2. A.N. Kolmogorov, Probl. Inf. Transm. 1, 1 (1965)

    Google Scholar 

  3. O. Onicescu, C.R. Acad. Sci. Paris A 263, 841 (1966)

    MATH  MathSciNet  Google Scholar 

  4. M. Gell-Mann, S. Lloyd, Complexity 2, 44 (1996)

    Article  MathSciNet  Google Scholar 

  5. C.H. Bennet, in The Universal Turing Machine, a Half Century, edited by R. Herhen (Oxford University Press, Oxford, 1988), p. 227

  6. S. Lloyd, H. Pagels, Ann. Phys. 188, 186 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  7. J.P. Crutchfield, C.R. Shalizi, Phys. Rev. E 59, 275 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. R. López-Ruiz, H.L. Mancini, X. Calbet, Phys. Lett. A 209, 321 (1995)

    Article  ADS  Google Scholar 

  9. O.A. Rosso, M.T. Martin, A. Plastino, Physica A 347, 444 (2005)

    Article  ADS  Google Scholar 

  10. L.D. Micco, C.M. González, H.A. Larrondo, M.T. Martin, A. Plastino, O.A. Rosso, Physica A 387, 3373 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. T. Yamano, Physica A 340, 131 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  12. J.R. Sánchez, R. López-Ruiz, Physica A 355, 633 (2005)

    Article  ADS  Google Scholar 

  13. T. Yamano, J. Math. Phys. 45, 1974 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. J.C. Angulo, J. Antolín, J. Chem. Phys. 128, 164109 (2008)

    ADS  Google Scholar 

  15. H.E. Montgomery Jr., K.D. Sen, Physica A 372, 2271 (2008)

    MATH  Google Scholar 

  16. J. Sañudo, R. López-Ruiz, J. Phys. A: Math. Gen. 41, 265303 (2008)

    Article  ADS  Google Scholar 

  17. K.C. Chatzisavvas, C.C. Moustakidis, C. Panos, J. Chem. Phys. 123, 174111 (2005)

    ADS  Google Scholar 

  18. A. Borgoo, F. de Proft, P. Geerlings, K.D. Sen, Chem. Phys. Lett. 444, 186 (2007)

    ADS  Google Scholar 

  19. K.D. Sen, J. Antolín, J.C. Angulo, Phys. Rev. A 76, 032502 (2007)

    Article  ADS  Google Scholar 

  20. A. Borgoo, P. Geerlings, K.D. Sen, Phys. Lett. A 375, 3829 (2011)

    Article  ADS  MATH  Google Scholar 

  21. P.A. Bouvrie, J.C. Angulo, J. Antolín, Chem. Phys. Lett. 539-540, 191 (2012)

    ADS  Google Scholar 

  22. J.S. Shiner, M. Davison, P.T. Landsberg, Phys. Rev. E 59, 1459 (1999)

    Article  ADS  Google Scholar 

  23. J. Pipek, I. Varga, Phys. Rev. A 46, 314 (1992)

    Article  ADS  Google Scholar 

  24. C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, Urbana, 1949)

  25. R.G. Catalán, J. Garay, R. López-Ruiz, Phys. Rev. E 66, 011102 (2002)

    Article  ADS  Google Scholar 

  26. R. López-Ruiz, Biophys. Chem. 115, 215 (2005)

    Article  Google Scholar 

  27. S. López-Rosa, J.C. Angulo, J. Antolín, Physica A 388, 2081 (2009)

    Article  ADS  Google Scholar 

  28. J. Antolín, S. López-Rosa, J.C. Angulo, Chem. Phys. Lett. 474, 233 (2009)

    ADS  Google Scholar 

  29. R. López-Ruiz, A. Nagy, E. Romera, J. Sañudo, J. Math. Phys. 50, 123528 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  30. Statistical Complexity: Applications in Electronic Structure, edited by K.D. Sen (Springer, Heidelberg, 2011)

  31. F.W. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Sánchez-Moreno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Moreno, P., Angulo, J. & Dehesa, J. A generalized complexity measure based on Rényi entropy. Eur. Phys. J. D 68, 212 (2014). https://doi.org/10.1140/epjd/e2014-50127-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50127-2

Keywords

Navigation