Skip to main content
Log in

Analytical solutions for diatomic Rydberg quasimolecules in a laser field

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In our previous works we studied analytically helical Rydberg states and circular Rydberg states of two-Coulomb-center systems consisting of two nuclei of charges Z and Z′, separated by a distance R, and one electron. We obtained energy terms of these Rydberg quasimolecules for a field-free case, as well as under a static electric field or under a static magnetic field. In the present paper we study such systems under a laser field. For the situation where the laser field is linearly-polarized along the internuclear axis, we found an analytical solution for the stable helical motion of the electron valid for wide ranges of the laser field strength and frequency. We also found resonances, corresponding to a laser-induced unstable motion of the electron, that result in the destruction of the helical states. For the situation where such Rydberg quasimolecules are under a circularly-polarized field, polarization plane being perpendicular to the internuclear axis, we found an analytical solution for circular Rydberg states valid for wide ranges of the laser field strength and frequency. We showed that both under the linearly-polarized laser field and under the circularly-polarized laser field, in the electron radiation spectrum in the addition to the primary spectral component at (or near) the unperturbed revolution frequency of the electron, there appear satellites. We found that for the case of the linearly-polarized laser field, the intensities of the satellites are proportional to the squares of the Bessel functions J 2 q (s), (q = 1, 2, 3, ...), where s is proportional to the laser field strength. As for the case of the circularly-polarized field, we demonstrated that there is a red shift of the primary spectral component — the shift linearly proportional to the laser field strength. Under a laser field of a known strength, in the case of the linear polarization the observation of the satellites would be the confirmation of the helical electronic motion in the Rydberg quasimolecule, while in the case of the circular polarization the observation of the red shift of the primary spectral component would be the confirmation of the specific type of the phase modulation of the electronic motion. Conversely, if the laser field strength is unknown, both the relative intensities of the satellites and the red shift of the primary spectral component could be used for measuring the laser field strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Nogues, A. Lupascu, A. Emmert, M. Brune, J.-M. Raimond, S. Haroche, in Atom Chips, edited by J. Reichel, V. Vuletic (Wiley-VCH, Weinheim, Germany, 2011), Chap. 10, Sect. 10.3.3

  2. N. Kryukov, E. Oks, Can. J. Phys. 90, 647 (2012)

    Article  Google Scholar 

  3. J.N. Tan, S.M. Brewer, N.D. Guise, Phys. Scr. T144, 014009 (2011)

    Article  ADS  Google Scholar 

  4. N. Kryukov, E. Oks, Int. Rev. At. Mol. Phys. 3, 17 (2012)

    Google Scholar 

  5. J.S. Dehesa, S. Lopez-Rosa, A. Martinez-Finkelshtein, R.J. Janez, Int. J. Quantum Chem. 110, 1529 (2010)

    Google Scholar 

  6. T. Nandi, J. Phys. B 42, 125201 (2009)

    Article  ADS  Google Scholar 

  7. M.R. Flannery, E. Oks, Eur. Phys. J. D 47, 27 (2008)

    Article  ADS  Google Scholar 

  8. U.D. Jentschura, P.J. Mohr, J.N. Tan, B.J. Wundt, Phys. Rev. Lett. 100, 160404 (2008)

    Article  ADS  Google Scholar 

  9. A.V. Shytov, M.I. Katsnelson, L.S. Levitov, Phys. Rev. Lett. 99, 246802 (2007)

    Article  ADS  Google Scholar 

  10. M. Devoret, S. Girvin, R. Schoelkopf, Ann. Phys. 16, 767 (2007)

    Article  MATH  Google Scholar 

  11. M.R. Flannery, E. Oks, Phys. Rev. A 73, 013405 (2006)

    Article  ADS  Google Scholar 

  12. E. Oks, Eur. Phys. J. D 28, 171 (2004)

    Article  ADS  Google Scholar 

  13. L. Holmlid, J. Phys.: Condens. Matter 14, 13469 (2002)

    ADS  Google Scholar 

  14. E. Oks, Phys. Rev. Lett. 85, 2084 (2000)

    Article  ADS  Google Scholar 

  15. E. Oks, J. Phys. B 33, 3319 (2000)

    Article  ADS  Google Scholar 

  16. S.K. Dutta, D. Feldbaum, A. Walz-Flannigan, J.R. Guest, G. Raithel, Phys. Rev. Lett. 86, 3993 (2001)

    Article  ADS  Google Scholar 

  17. H. Carlsen, O. Goscinski, Phys. Rev. A 59, 1063 (1999)

    Article  ADS  Google Scholar 

  18. J.E. Rice, E.S. Marmar, J.L. Terry, E. Källne, J. Källne, Phys. Rev. Lett. 56, 50 (1986)

    Article  ADS  Google Scholar 

  19. G.R. Fowles, G.L. Cassiday, in Analytical Mechanics (Thomson Brooks/Cole, Belmont, 2005), Sect. 3.6

  20. S.T. Thornton, J.B. Marion, in Classical Dynamics of Particles and Systems (Thomson Brooks/Cole, Belmont, 2004), Sect. 3.6

  21. I.I. Sobelman, An Introduction to the Theory of Atomic Spectra (Pergamon, Oxford, 1972)

  22. D.I. Blochinzew, Phys. Z. Sow. Union 4, 501 (1933)

    Google Scholar 

  23. E. Oks, in Plasma Spectroscopy. The Influence of Microwave and Laser Fields (Springer, New York, 1995), Sect. 3.1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Oks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryukov, N., Oks, E. Analytical solutions for diatomic Rydberg quasimolecules in a laser field. Eur. Phys. J. D 68, 171 (2014). https://doi.org/10.1140/epjd/e2014-40765-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40765-7

Keywords

Navigation