Skip to main content
Log in

Molecular dynamics simulation of melting of fcc Lennard-Jones nanoparticles

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Melting of fcc Lennard-Jones (LJ) nanoparticles is studied by heating up models from low temperature toward liquid phase using molecular dynamics (MD) simulation. Atomic mechanism of melting is analyzed via temperature dependence of potential energy, heat capacity, analysis of the spatio-temporal arrangements of liquidlike atoms occurred during the heating process. Moreover, radial distribution function (RDF), mean-squared displacement (MSD) of atoms and radial density profile are also used for deeper analyzing melting. Surface melting is under much attention. We also analyze the evolution of structure of nanoparticles upon heating via the global order parameter Q 6 and Honeycutt-Andersen (HA) analysis. We find previously unreported information as follows. At temperature far below a melting point, a quasi-liquid layer containing both liquidlike and solidlike atoms occurs in the surface shell of nanoparticles unlike that thought in the past. Further heating leads to the formation of a purely liquid layer at the surface and homogeneous occurrence/growth of liquidlike atoms throughout the interior of nanoparticles. Melting proceeds further via two different mechanisms: homogeneous one in the interior and propagation of liquid front from the surface into the core leading to fast collapse of crystalline matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.S. Mei, K. Lu, Prog. Mater. Sci. 52, 1175 (2007)

    Article  Google Scholar 

  2. K. Lu, Z.H. Jin, Curr. Opin. Solid State Mater. Sci. 5, 39 (2001)

    Article  ADS  Google Scholar 

  3. J.G. Dash, Contemp. Phys. 30, 89 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  4. H. Sakai, Surf. Sci. 351, 285 (1996)

    Article  ADS  Google Scholar 

  5. K.F. Peters, Y.-W. Chung, J.B. Cohen, Appl. Phys. Lett. 71, 2391 (1997)

    Article  ADS  Google Scholar 

  6. K.F. Peters, J.B. Cohen, Y.-W. Chung, Phys. Rev. B 57, 13430 (1998)

    Article  ADS  Google Scholar 

  7. M. Polcik, L. Wilde, J. Haase, Phys. Rev. Lett. 78, 491 (1997)

    Article  ADS  Google Scholar 

  8. P.Z. Pawlow, Z. Phys. Chem. 65, 545 (1909)

    Google Scholar 

  9. P.A. Buffat, J.P. Borel, Phys. Rev. A 13, 2287 (1976)

    Article  ADS  Google Scholar 

  10. H. Reiss, I.B. Wilson, J. Colloid Sci. 3, 551 (1948)

    Article  Google Scholar 

  11. C.R.M. Wronski, J. Appl. Phys. 18, 1731 (1967)

    Google Scholar 

  12. K.J. Hanszen, Z. Phys. 157, 523 (1960)

    Article  ADS  Google Scholar 

  13. P.R. Couchman, W.A. Jesser, Nature (London) 269, 481 (1977)

    Article  ADS  Google Scholar 

  14. V.P. Skripov, V.P. Koverda, V.N. Skokov, Phys. Stat. Sol. A 66, 109 (1981)

    Article  ADS  Google Scholar 

  15. R.R. Vanfleet, J.M. Mochel, Surf. Sci. 341, 40 (1995)

    Article  ADS  Google Scholar 

  16. V.V. Hoang, J. Phys. Chem. C 116, 14728 (2012)

    Article  Google Scholar 

  17. J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91, 4950 (1987)

    Article  Google Scholar 

  18. Z.H. Jin, P. Gumbsch, K. Lu, E. Ma, Phys. Rev. Lett. 87, 055703 (2001)

    Article  ADS  Google Scholar 

  19. E.G. Noya, P.K. Doye, J. Chem. Phys. 124, 104503 (2006)

    Article  ADS  Google Scholar 

  20. P.A. Frantsuzov, V.A. Mandelshtam, Phys. Rev. E 72, 037102 (2005)

    Article  ADS  Google Scholar 

  21. V.A. Mandelshtam, P.A. Frantsuzov, F. Calvo, J. Phys. Chem. A 110, 5326 (2006)

    Article  Google Scholar 

  22. V.M. Samsonov, S.S. Kharechkin, S.L. Gafner, L.V. Redel, Y.Y. Gafner, Cryst. Rep. 54, 526 (2009)

    Article  Google Scholar 

  23. J. Deckman, V.A. Mandelshtam, Phys. Rev. E 79, 022101 (2009)

    Article  ADS  Google Scholar 

  24. K. Nishio, J. Koga, T. Yamaguchi, F. Yonezawa, J. Phys. Soc. Jpn 73, 627 (2004)

    Article  ADS  Google Scholar 

  25. T. Bachels, H.-J. Guntherodt, Phys. Rev. Lett. 85, 1250 (2000)

    Article  ADS  Google Scholar 

  26. Y. Qi, T. Cagin, W.L. Johnson, W.A. Goddard III, J. Chem. Phys. 115, 385 (2001)

    Article  ADS  Google Scholar 

  27. S. Alavi, D.L. Thompson, J. Phys. Chem. A 110, 1518 (2006)

    Article  Google Scholar 

  28. F.A. Lindemann, Z. Phys. 11, 609 (1910)

    MATH  Google Scholar 

  29. V.V. Hoang, Philos. Mag. 91, 3443 (2011)

    Article  ADS  Google Scholar 

  30. F.H. Stillinger, Science 267, 1935 (1995)

    Article  ADS  Google Scholar 

  31. A. Pavlovska, D. Dobrev, E. Bauer, Surf. Sci. 286, 176 (1993)

    Article  ADS  Google Scholar 

  32. J.C. Heyraud, J.J. Metois, J.M. Bermond, J. Cryst. Growth 98, 355 (1989)

    Article  ADS  Google Scholar 

  33. S.J. Peppiatt, J.R. Sambles, Proc. R. Soc. Lond. A 345, 387 (1975)

    Article  ADS  Google Scholar 

  34. G.L. Allen, R.A. Bayles, W.W. Gile, W.A. Jesser, Thin Solid Film 144, 297 (1986)

    Article  ADS  Google Scholar 

  35. R. Garrigos, P. Cheyssac, R. Kofman, Z. Phys. D 12, 497 (1989)

    Article  ADS  Google Scholar 

  36. Y. Oshima, K. Takayanagi, Z. Phys. D 27, 287 (1993)

    Article  ADS  Google Scholar 

  37. F. Ercolessi, W. Andreoni, E. Tosatti, Phys. Rev. Lett. 66, 911 (1991)

    Article  ADS  Google Scholar 

  38. D.S. Ivanov, L.V. Zhigilei, Phys. Rev. Lett. 98, 195701 (2007)

    Article  ADS  Google Scholar 

  39. D.S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)

    Article  ADS  Google Scholar 

  40. Z. Lin, L.V. Zhigilei, Phys. Rev. B 73, 184113 (2006)

    Article  ADS  Google Scholar 

  41. Y.G. Chushak, L.S. Bartell, J. Phys. Chem. B 105, 11605 (2001)

    Article  Google Scholar 

  42. X. Li, J. Huang, J. Solid State Chem. 176, 234 (2003)

    Article  ADS  Google Scholar 

  43. C.-L. Kuo, P. Clancy, J. Phys. Chem. B 109, 13743 (2005)

    Article  Google Scholar 

  44. M.H. Ghatee, K. Shekoohi, Fluid Phase Equilib. 327, 14 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Van Sang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Sang, L., Van Hoang, V. & Thuy Hang, N. Molecular dynamics simulation of melting of fcc Lennard-Jones nanoparticles. Eur. Phys. J. D 67, 64 (2013). https://doi.org/10.1140/epjd/e2013-30584-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-30584-9

Keywords

Navigation