Skip to main content
Log in

Optical study of a diffuse bipolar nanosecond pulsed dielectric barrier discharge with different dielectric thicknesses in air

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, a bipolar nanosecond high-voltage pulse power supply with about 20 ns rising time is employed to generate a diffuse dielectric barrier discharge using dielectric plates of different thicknesses. Dielectric thickness, which is regarded as an important discharge parameter, can improve diffuse discharge characteristics. Both the images of the diffuse dielectric barrier discharge and the optical emission spectra with different dielectric thicknesses are recorded successfully under severe electromagnetic interference. The effects of the discharge gap distance, pulse peak voltage, and pulse repetition rate on the emission intensity of N2 (C3Π u → B3Π g ) of nanosecond pulsed dielectric barrier discharge with different dielectric thicknesses were investigated. It was found that increasing dielectric thickness is not conducive to acquiring a larger area of diffuse discharge. Also, the intensity of discharge decays and the discharge volume constricts in a horizontal direction with increasing dielectric thickness. The experimental result also shows that the emission intensity of N2 (C3Π u → B3Π g ) decreases with the increase of the dielectric thickness and the discharge gap distance, but rises with both increasing both pulse peak voltage and pulse repetition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ono, T. Oda, IEEE Trans. Ind. Appl. 37, 709 (2001)

    Article  Google Scholar 

  2. B. Sun, M. Sato, J.S. Clements, J. Electrost. 39, 189 (1997)

    Article  Google Scholar 

  3. Y. Sawada, S. Ogawa, M. Kogoma, J. Phys. D 28, 16 (1995)

    Google Scholar 

  4. R.P. Mildren, R.J. Carman, I.S. Falconer, IEEE Trans. Plasma Sci. 30, 192 (2002)

    Article  ADS  Google Scholar 

  5. J. Mahoney, W. Zhu, V.S. Johnson, K.H. Becker, J.L. Lopez, Eur. Phys. J. D 60, 441 (2010)

    Article  ADS  Google Scholar 

  6. F. Massines, G. Gouda, J. Phys. D 31, 3411 (1998)

    Article  ADS  Google Scholar 

  7. D.X. Nie, W.C. Wang, D.Z. Yang, Spectrochim. Acta Part A 79, 1896 (2011)

    Article  ADS  Google Scholar 

  8. F. Liu, W. Wang, W. Zheng, Y. Wang, Eur. Phys. J. D 42, 435 (2007)

    Article  ADS  Google Scholar 

  9. K.L. Wang, W.C. Wang, D.Z. Yang, Y. Huo, D.Z. Wang, Appl. Surf. Sci. 256, 6859 (2010)

    Article  ADS  Google Scholar 

  10. Y.B. Golubovskii, V.A. Maiorov, J. Behnke, J.F. Behnke, J. Phys. D 36, 39 (2003)

    Article  ADS  Google Scholar 

  11. A. Mizuno, J.S. Clements, R.H. Davis, IEEE Trans. Ind. Appl. 22, 516 (1986)

    Article  Google Scholar 

  12. X. Duten, D. Packan, L. Yu, C.O. Laux, C.H. Kruger, IEEE Trans. Plasma Sci. 30, 178 (2002)

    Article  ADS  Google Scholar 

  13. J.M. Williamson, D.D. Trump, P. Bletzinger, B.N. Ganguly, J. Phys. D 20, 4400 (2006)

    Article  ADS  Google Scholar 

  14. K. Takaki, M. Hosokawa, T. Sasaki, S. Mukaigawa, T. Fujiwara, Appl. Phys. Lett. 86, 151 (2005)

    Google Scholar 

  15. H. Ayan, G. Fridman, A.F. Gutsol, IEEE Trans. Plasma Sci. 36, 504 (2008)

    Article  ADS  Google Scholar 

  16. H. Ayan, D. Staack, G. Fridman, J. Phys. D 42, 125202 (2009)

    Article  ADS  Google Scholar 

  17. T. Shao, P. Yan, K. Long, S. Zhang, IEEE Trans. Plasma Sci. 36, 1358 (2008)

    Article  ADS  Google Scholar 

  18. T. Shao, K. Long, C. Zhang, P. Yan, S. Zhang, R. Pan, J. Phys. D 41, 215203 (2008)

    Article  ADS  Google Scholar 

  19. D.Z. Yang, W.C. Wang, S.Z. Li, Y. Song, D.X. Nie, J. Phys. D 43, 455202 (2010)

    Article  ADS  Google Scholar 

  20. D.Z. Yang, W.C. Wang, L. Jia, D.X. Nie, H.C. Shi, J. Appl. Phys. 109, 073308 (2011)

    Article  ADS  Google Scholar 

  21. L. Mangolini, C. Anderson, J. Heberlein, J. Phys. D 37, 1021 (2004)

    Article  ADS  Google Scholar 

  22. T. Shao, K. Long, C. Zhang, J. Wang, D. Zhang, P. Yan, S. Zhang, J. Electrostat. 67, 215 (2009)

    Article  Google Scholar 

  23. Y. Luo, Z. Fang, H. Wang, High Voltage Apparatus 40, 81 (2004)

    Google Scholar 

  24. Y. Yang, G.J. Zhang, G.Q. Yang, Y.B. Zhang, W.Y. Zhang, High Voltage Engineering 33, 37 (2007)

    Google Scholar 

  25. M. Li, C.R. Li, H.M. Zhan, J.B. Xu, X.X. Wang, Appl. Phys. Lett. 92, 031503 (2008)

    Article  ADS  Google Scholar 

  26. J.I. Levatter, S.C. Lin, J. Phys. D 51, 210 (1980)

    Google Scholar 

  27. Y. Yang, W.C. Wang, D.Z. Yang, L. Jia, S. Zhang, J. Electrostat. 70, 356 (2012)

    Article  Google Scholar 

  28. F. Liu, G. Huang, B. Ganguly, Plasma Source Sci. Technol. 19, 045017 (2010)

    Article  ADS  Google Scholar 

  29. I.A. Kossyi, A.Y. Kostinsky, A.A. Matveyev, V.P. Silakov, Plasma Source Sci. Technol. 1, 207 (1992)

    Article  ADS  Google Scholar 

  30. O. Eichwald, M. Yousfi, A. Hennad, M.D. Benabdessadok, J. Appl. Phys. 82, 4781 (1997)

    Article  ADS  Google Scholar 

  31. V. Guerra, P.A. Sa, J. Loureiro, J. Phys. D 34, 1745 (2001)

    Article  ADS  Google Scholar 

  32. S.Q. Luo, C.M. Denning, J.E. Scharer, J. Appl. Phys. 104, 013301 (2008)

    Article  ADS  Google Scholar 

  33. J. Lugue, D.R. Crosley, Lifbase: Database and Spectral Simulation Program (Version 1.6), SRI International Report MP 99-009, 1999

  34. C.O. Laux, T.G. Spencer, C.H. Kruger, R.N. Zare, Plasma Source Sci. Technol. 12, 125 (2003)

    Article  ADS  Google Scholar 

  35. L. Yu, L. Pierrot, C.O. Laux, C.H. Kruger, Plasma Chem. Plasma Process. 21, 483 (2001)

    Article  Google Scholar 

  36. Y.P. Raizer, Gas Discharge Physics (Springer-Verlag, Berlin, Heidelberg, 1991)

  37. Y.C. Hong, H.S. Uhm, Phys. Plasmas 14, 053503 (2007)

    Article  ADS  Google Scholar 

  38. D.Z. Yang, Y. Yang, S.Z. Li, D.X. Nie, S. Zhang, W.C. Wang, Plasma Source Sci. Technol. 21, 035004 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.C. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Wang, W., Zhang, S. et al. Optical study of a diffuse bipolar nanosecond pulsed dielectric barrier discharge with different dielectric thicknesses in air. Eur. Phys. J. D 66, 319 (2012). https://doi.org/10.1140/epjd/e2012-30434-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30434-4

Keywords

Navigation