Skip to main content
Log in

Dynamics of two coupled chaotic systems driven by external signals

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

Setting-up a controlled or synchronized state in a space-time chaotic structure targeting an unstable periodic orbit is a key feature of many problems in high dimensional physical, electronics, biological and ecological systems (among others). Formerly, we have shown numerically and experimentally that phase synchronization [M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 4193 (1997)] can be achieved in time dependent hydrodynamic flows [D. Maza, A. Vallone, H.L. Mancini, S. Boccaletti, Phys. Rev. Lett. 85, 5567 (2000)]. In that case the flow was generated in a small container with inhomogeneous heating in order to have a single roll structure produced by a Bénard-Marangoni instability [E.L. Koshmieder, Bénard Cells and Taylor Vortices (Cambridge University Press, 1993)]. Phase synchronization was achieved by a small amplitude signal injected at a subharmonic frequency obtained from the measured Fourier temperature spectrum. In this work, we analyze numerically the effects of driving two previously synchronized chaotic oscillators by an external signal. The numerical system represents a convective experiment in a small container with square symmetry, where boundary layer instabilities are coupled by a common flow. This work is an attempt to control this situation and overcome some difficulties to select useful frequency values for the driving force, analyzing the influence of different harmonic injection signals on the synchronization in a system composed by two identical chaotic Takens-Bogdanov equations (TBA and TBB) bidirectionally coupled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 4193 (1997)

    Article  ADS  Google Scholar 

  2. D. Maza, A. Vallone, H.L. Mancini, S. Boccaletti, Phys. Rev. Lett. 85, 5567 (2000)

    Article  ADS  Google Scholar 

  3. E.L. Koshmieder, Bénard Cells and Taylor Vortices (Cambridge University Press, 1993)

  4. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    Article  ADS  Google Scholar 

  5. S. Boccaletti, C. Grebogi, Y.-C. Lai, H. Mancini, D. Maza, Phys. Rep. 329, 103 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Bernardini, J. Bragard, H. Mancini, Math. Biosci. Eng. 1, 339 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Schöll, H.G. Schuster, The Handbook of Chaos Control (Wiley-VCH, 2007)

  8. R.O. Gregoriev, Physica D 140, 171 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Handel, R.O. Gregoriev, Phys. Rev. E 72, 066208 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. R.O. Gregoriev, M.C. Cross, H.G. Schuster, Phys. Rev. Lett. 79, 2795 (1997)

    Article  ADS  Google Scholar 

  11. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Huang, Phys. Rep. 424, 175 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. T. Ondarçuhu, G.B. Mindlin, H.L. Mancini, C. Pérez-García, Phys. Rev. Lett. 70, 3892 (1993)

    Article  ADS  Google Scholar 

  13. T. Ondarçuhu, G.B. Mindlin, H.L. Mancini, C. Pérez-García, J. Phys. Cond. Mat. 6, A427 (1994)

    Article  ADS  Google Scholar 

  14. M. Huerta, D. Krmpotic, G.B. Mindlin, H. Mancini, D. Maza, C. Pérez-García, Physica D 96, 200 (1996)

    Article  MATH  Google Scholar 

  15. V. Anishenko, S. Asthakov, T. Vadivasova, Europhys. Lett. 86, 30003 (2009)

    Article  ADS  Google Scholar 

  16. G.B. Mindlin, Ondarcuhu, H. Mancini, C.P. Garcia, A. Garcimartin, Int. J. Bifurc. Chaos 4, 1121 (1994)

    Article  MATH  Google Scholar 

  17. O. Rössler, Phys. Lett. A 71, 155 (1979)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. G. Vidal, H. Mancini, Int. J. Bifurc. Chaos 19, 719 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. H.G. Schuster, An introduction to Deterministic Chaos (Wiley-VCH, 2005)

  20. J. Milnor, Commun. Math. Phys. 99, 177 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. J. Bragard, G. Vidal, H. Mancini, C. Mendoza, S. Boccaletti, Chaos 17 (2007)

  22. G. Vidal, H. Mancini, Int. J. Bifurc. Chaos 20, 885 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. M.S. Baptista, I. Caldas, Nonlinear Dyn. 17, 119 (1998)

    Article  MATH  Google Scholar 

  24. R. Chacon, Phys. Rev. Lett. 86, 1737 (2001)

    Article  ADS  Google Scholar 

  25. R. Gilmore, C. Letellier, The symmetry of Chaos (Oxford Univ. Press, 2007)

  26. D. Maza, B. Echebarría, C. Pérez-García, H.L. Mancini, Phys. Scr. T67, 82 (1996)

    Article  ADS  Google Scholar 

  27. S. Boccaletti, The synchronized dynamics of complex systems, Monograph Series on Nonlinear Sciences and Complexity (Elsevier, 2008), Vol. 6

  28. H. Mancini, D. Maza, Phys. Rev. E 55, 2757 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mancini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mancini, H., Vidal, G. Dynamics of two coupled chaotic systems driven by external signals. Eur. Phys. J. D 62, 57–66 (2011). https://doi.org/10.1140/epjd/e2010-10314-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-10314-9

Keywords

Navigation