Skip to main content
Log in

Dynamical origin of complex motor patterns

  • Nonlinear Dynamics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Behavior emerges as the nervous system generates motor patterns in charge of driving a peripheral biomechanical device. For several cases in the animal kingdom, it has been identified that the motor patterns used in order to accomplish a diversity of tasks are the different solutions of a simple, low dimensional nonlinear dynamical system. Yet, motor patterns emerge from the interaction of an enormous number of individual dynamical units. In this work, we study the dynamics of the average activity of a large set of coupled excitable units which are periodically forced. We show that low dimensional, yet non trivial dynamics emerges. As a case study, we analyze the air sac pressure patterns used by domestic canaries during song, which consists of a succession of repetitions of different syllable types. We show that the pressure patterns used to generate different syllables can be approximated by the solutions of the investigated model. In this way, we are capable of integrating different description scales of our problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Golubitsky, I. Stewart, B. Pietro-Luciano, J.J. Collins, Nature 410, 693 (1999)

    Article  ADS  Google Scholar 

  2. L.M. Alonso, J.A. Alliende, F. Goller, G.B. Mindlin, Phys. Rev. E 79, 041929 (2009)

    Article  ADS  Google Scholar 

  3. Y. Kuramoto, Self-entrainment of a population of coupled nonlinear oscillators, Lecture notes in Physics (Springer, New York, 1975), Vol. 39, pp. 420–422

  4. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A universal concept in nonlinear science (Cambridge University Press, Cambridge, 2001)

  5. E. Ott, T.M. Antonsen, Chaos 18, 037113 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  6. E. Ott, T.M. Antonsen, Chaos 19, 023117 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  7. L.M. Childs, S.H. Strogatz, Chaos 18, 043128 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  8. E.M. Izhikevich, IEEE Trans. Neural Netw. 10, 479 (1999)

    Google Scholar 

  9. F.C. Hoppensteadt, E.M. Izhikevich, Weakly connected neural networks (Springer-Verlag New York, 1997)

  10. T. Gardner, G. Cecchi, M. Magnasco, R. Laje, G.B. Mindlin, Phys. Rev. Lett. 87, 208101 (2001)

    Article  ADS  Google Scholar 

  11. G.B. Mindlin, R. Laje, The physics of birdsong (Springer, 2005)

  12. F. Goller, R.A. Suthers, J. Neurophysiol. 75, 867 (1996)

    Google Scholar 

  13. M.A. Trevisan, G.B. Mindlin, F. Goller, Phys. Rev. Lett. 96, 058103 (2006)

    Article  ADS  Google Scholar 

  14. R. Gilmore, M. Lefranc, The topology of chaos (Wiley, Hoboken, 2002)

  15. M.S. Brainard, The anterior forebrain pathway and vocal plasticity, in Neuroscience of birdsong, edited by H.P. Zeigler, P. Marler (Cambridge University Press, Cambridge, 2008)

  16. M. Mitchell, An introduction to genetic algorithms (MIT press, Cambridge, 1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Mindlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, L., Alliende, J. & Mindlin, G. Dynamical origin of complex motor patterns. Eur. Phys. J. D 60, 361–367 (2010). https://doi.org/10.1140/epjd/e2010-00225-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00225-2

Keywords

Navigation